""" 测试编排器模块 负责组合API解析器、API调用器、验证器和规则执行器,进行端到端的API测试 """ import logging import json import time import re # 添加 re 模块导入 from typing import Dict, List, Any, Optional, Union, Tuple, Type, ForwardRef from enum import Enum import datetime import datetime as dt from uuid import UUID from pydantic import BaseModel, Field, create_model from pydantic.networks import EmailStr from .input_parser.parser import InputParser, YAPIEndpoint, SwaggerEndpoint, ParsedYAPISpec, ParsedSwaggerSpec from .api_caller.caller import APICaller, APIRequest, APIResponse from .json_schema_validator.validator import JSONSchemaValidator from .test_framework_core import ValidationResult, TestSeverity, APIRequestContext, APIResponseContext, BaseAPITestCase from .test_case_registry import TestCaseRegistry # 尝试导入 LLMService,如果失败则允许,因为 LLM 功能是可选的 try: from .llm_utils.llm_service import LLMService except ImportError: LLMService = None logging.getLogger(__name__).info("LLMService 未找到,LLM 相关功能将不可用。") # Cache for dynamically created Pydantic models to avoid redefinition issues _dynamic_model_cache: Dict[str, Type[BaseModel]] = {} class ExecutedTestCaseResult: """存储单个APITestCase在其适用的端点上执行后的结果。""" class Status(str, Enum): """单个测试用例的执行状态枚举""" PASSED = "通过" FAILED = "失败" ERROR = "执行错误" # 指测试用例代码本身出错,而不是API验证失败 SKIPPED = "跳过" # 如果测试用例因某些条件被跳过执行 def __init__(self, test_case_id: str, test_case_name: str, test_case_severity: TestSeverity, status: Status, validation_points: List[ValidationResult], message: str = "", # 总体消息,例如执行错误时的错误信息 duration: float = 0.0): self.test_case_id = test_case_id self.test_case_name = test_case_name self.test_case_severity = test_case_severity self.status = status self.validation_points = validation_points or [] self.message = message self.duration = duration # 执行此测试用例的耗时 self.timestamp = datetime.datetime.now() def to_dict(self) -> Dict[str, Any]: return { "test_case_id": self.test_case_id, "test_case_name": self.test_case_name, "test_case_severity": self.test_case_severity.value, # 使用枚举值 "status": self.status.value, "message": self.message, "duration_seconds": self.duration, "timestamp": self.timestamp.isoformat(), "validation_points": [vp.details if vp.details else {"passed": vp.passed, "message": vp.message} for vp in self.validation_points] } class TestResult: # 原来的 TestResult 被重构为 EndpointExecutionResult """ 存储对单个API端点执行所有适用APITestCase后的整体测试结果。 (此类替换了旧的 TestResult 的角色,并进行了结构调整) """ class Status(str, Enum): # 这个枚举保持不变,但其含义现在是端点的整体状态 """端点测试状态枚举""" PASSED = "通过" # 所有关键测试用例通过 FAILED = "失败" # 任何一个关键测试用例失败 ERROR = "错误" # 测试执行过程中出现错误(非API本身错误,而是测试代码或环境) SKIPPED = "跳过" # 如果整个端点的测试被跳过 PARTIAL_SUCCESS = "部分成功" # 一些非关键测试用例失败,但关键的通过 def __init__(self, endpoint_id: str, # 通常是 method + path endpoint_name: str, # API 的可读名称/标题 overall_status: Status = Status.SKIPPED, # 默认为跳过,后续根据测试用例结果更新 start_time: Optional[datetime.datetime] = None ): self.endpoint_id = endpoint_id self.endpoint_name = endpoint_name self.overall_status = overall_status self.executed_test_cases: List[ExecutedTestCaseResult] = [] self.start_time = start_time if start_time else datetime.datetime.now() self.end_time: Optional[datetime.datetime] = None self.error_message: Optional[str] = None # 如果整个端点测试出错,记录错误信息 def add_executed_test_case_result(self, result: ExecutedTestCaseResult): self.executed_test_cases.append(result) def finalize_endpoint_test(self): self.end_time = datetime.datetime.now() # 根据所有 executed_test_cases 的状态和严重性来计算 overall_status if not self.executed_test_cases and self.overall_status == TestResult.Status.SKIPPED : # 如果没有执行任何测试用例且状态仍为初始的SKIPPED pass # 保持 SKIPPED elif any(tc.status == ExecutedTestCaseResult.Status.ERROR for tc in self.executed_test_cases): self.overall_status = TestResult.Status.ERROR # 可以考虑将第一个遇到的ERROR的message赋给self.error_message first_error = next((tc.message for tc in self.executed_test_cases if tc.status == ExecutedTestCaseResult.Status.ERROR), None) if first_error: self.error_message = f"测试用例执行错误: {first_error}" else: # 筛选出失败的测试用例 failed_tcs = [tc for tc in self.executed_test_cases if tc.status == ExecutedTestCaseResult.Status.FAILED] if not failed_tcs: if not self.executed_test_cases: # 如果没有执行任何测试用例但又不是SKIPPED,可能也算某种形式的错误或特殊通过 self.overall_status = TestResult.Status.PASSED # 或者定义一个"NO_CASES_RUN"状态 else: self.overall_status = TestResult.Status.PASSED else: # 检查失败的测试用例中是否有CRITICAL或HIGH严重级别的 if any(tc.test_case_severity in [TestSeverity.CRITICAL, TestSeverity.HIGH] for tc in failed_tcs): self.overall_status = TestResult.Status.FAILED else: # 所有失败的都是 MEDIUM, LOW, INFO self.overall_status = TestResult.Status.PARTIAL_SUCCESS if not self.executed_test_cases and self.overall_status not in [TestResult.Status.SKIPPED, TestResult.Status.ERROR]: # 如果没有执行测试用例,并且不是因为错误或明确跳过,这可能是一个配置问题或意外情况 self.overall_status = TestResult.Status.ERROR # 或者一个更特定的状态 self.error_message = "没有为该端点找到或执行任何适用的测试用例。" @property def duration(self) -> float: if self.start_time and self.end_time: return (self.end_time - self.start_time).total_seconds() return 0.0 def to_dict(self) -> Dict[str, Any]: data = { "endpoint_id": self.endpoint_id, "endpoint_name": self.endpoint_name, "overall_status": self.overall_status.value, "duration_seconds": self.duration, "start_time": self.start_time.isoformat() if self.start_time else None, "end_time": self.end_time.isoformat() if self.end_time else None, "executed_test_cases": [tc.to_dict() for tc in self.executed_test_cases] } if self.error_message: data["error_message"] = self.error_message return data class TestSummary: """测试结果摘要 (已更新以适应新的结果结构)""" def __init__(self): self.total_endpoints_defined: int = 0 # YAPI/Swagger中定义的端点总数 self.total_endpoints_tested: int = 0 # 实际执行了测试的端点数量 (至少有一个测试用例被执行) self.endpoints_passed: int = 0 self.endpoints_failed: int = 0 self.endpoints_partial_success: int = 0 self.endpoints_error: int = 0 self.endpoints_skipped: int = 0 # 由于配置或过滤器,整个端点被跳过测试 self.total_test_cases_applicable: int = 0 # 所有端点上适用测试用例的总和 self.total_test_cases_executed: int = 0 # 所有端点上实际执行的测试用例总数 self.test_cases_passed: int = 0 self.test_cases_failed: int = 0 self.test_cases_error: int = 0 # 测试用例代码本身出错 self.test_cases_skipped_in_endpoint: int = 0 # 测试用例在端点执行中被跳过 self.start_time = datetime.datetime.now() self.end_time: Optional[datetime.datetime] = None self.detailed_results: List[TestResult] = [] # 将存储新的 TestResult (EndpointExecutionResult) 对象 def add_endpoint_result(self, result: TestResult): # result 现在是新的 TestResult 类型 self.detailed_results.append(result) if result.executed_test_cases or result.overall_status not in [TestResult.Status.SKIPPED, TestResult.Status.ERROR]: # 只有实际尝试了测试的端点才算tested if not (len(result.executed_test_cases) == 0 and result.overall_status == TestResult.Status.ERROR and result.error_message and "没有为该端点找到或执行任何适用的测试用例" in result.error_message): self.total_endpoints_tested +=1 if result.overall_status == TestResult.Status.PASSED: self.endpoints_passed += 1 elif result.overall_status == TestResult.Status.FAILED: self.endpoints_failed += 1 elif result.overall_status == TestResult.Status.PARTIAL_SUCCESS: self.endpoints_partial_success +=1 elif result.overall_status == TestResult.Status.ERROR: self.endpoints_error += 1 elif result.overall_status == TestResult.Status.SKIPPED: # 端点级别跳过 self.endpoints_skipped +=1 for tc_result in result.executed_test_cases: self.total_test_cases_executed += 1 # 每个APITestCase算一次执行 if tc_result.status == ExecutedTestCaseResult.Status.PASSED: self.test_cases_passed += 1 elif tc_result.status == ExecutedTestCaseResult.Status.FAILED: self.test_cases_failed += 1 elif tc_result.status == ExecutedTestCaseResult.Status.ERROR: self.test_cases_error +=1 elif tc_result.status == ExecutedTestCaseResult.Status.SKIPPED: self.test_cases_skipped_in_endpoint +=1 def set_total_endpoints_defined(self, count: int): self.total_endpoints_defined = count def set_total_test_cases_applicable(self, count: int): self.total_test_cases_applicable = count def finalize_summary(self): self.end_time = datetime.datetime.now() @property def duration(self) -> float: if not self.end_time: return 0.0 return (self.end_time - self.start_time).total_seconds() @property def endpoint_success_rate(self) -> float: if self.total_endpoints_tested == 0: return 0.0 # 通常只把 PASSED 算作成功 return (self.endpoints_passed / self.total_endpoints_tested) * 100 @property def test_case_success_rate(self) -> float: if self.total_test_cases_executed == 0: return 0.0 return (self.test_cases_passed / self.total_test_cases_executed) * 100 def to_dict(self) -> Dict[str, Any]: return { "summary_metadata": { "start_time": self.start_time.isoformat(), "end_time": self.end_time.isoformat() if self.end_time else None, "duration_seconds": f"{self.duration:.2f}", }, "endpoint_stats": { "total_defined": self.total_endpoints_defined, "total_tested": self.total_endpoints_tested, "passed": self.endpoints_passed, "failed": self.endpoints_failed, "partial_success": self.endpoints_partial_success, "error": self.endpoints_error, "skipped": self.endpoints_skipped, "success_rate_percentage": f"{self.endpoint_success_rate:.2f}", }, "test_case_stats": { "total_applicable": self.total_test_cases_applicable, # 计划执行的测试用例总数 "total_executed": self.total_test_cases_executed, # 实际执行的测试用例总数 "passed": self.test_cases_passed, "failed": self.test_cases_failed, "error_in_execution": self.test_cases_error, "skipped_during_endpoint_execution": self.test_cases_skipped_in_endpoint, "success_rate_percentage": f"{self.test_case_success_rate:.2f}", }, "detailed_results": [result.to_dict() for result in self.detailed_results] } def to_json(self, pretty=True) -> str: indent = 2 if pretty else None return json.dumps(self.to_dict(), indent=indent, ensure_ascii=False) def print_summary_to_console(self): # Renamed from print_summary # (Implementation can be more detailed based on the new stats) print("\n===== 测试运行摘要 =====") print(f"开始时间: {self.start_time.isoformat()}") if self.end_time: print(f"结束时间: {self.end_time.isoformat()}") print(f"总耗时: {self.duration:.2f} 秒") print("\n--- 端点统计 ---") print(f"定义的端点总数: {self.total_endpoints_defined}") print(f"实际测试的端点数: {self.total_endpoints_tested}") print(f" 通过: {self.endpoints_passed}") print(f" 失败: {self.endpoints_failed}") print(f" 部分成功: {self.endpoints_partial_success}") print(f" 执行错误: {self.endpoints_error}") print(f" 跳过执行: {self.endpoints_skipped}") print(f" 端点通过率: {self.endpoint_success_rate:.2f}%") print("\n--- 测试用例统计 ---") print(f"适用的测试用例总数 (计划执行): {self.total_test_cases_applicable}") print(f"实际执行的测试用例总数: {self.total_test_cases_executed}") print(f" 通过: {self.test_cases_passed}") print(f" 失败: {self.test_cases_failed}") print(f" 执行错误 (测试用例代码问题): {self.test_cases_error}") print(f" 跳过 (在端点内被跳过): {self.test_cases_skipped_in_endpoint}") print(f" 测试用例通过率: {self.test_case_success_rate:.2f}%") # 可选:打印失败的端点和测试用例摘要 failed_endpoints = [res for res in self.detailed_results if res.overall_status == TestResult.Status.FAILED] if failed_endpoints: print("\n--- 失败的端点摘要 ---") for ep_res in failed_endpoints: print(f" 端点: {ep_res.endpoint_id} ({ep_res.endpoint_name}) - 状态: {ep_res.overall_status.value}") for tc_res in ep_res.executed_test_cases: if tc_res.status == ExecutedTestCaseResult.Status.FAILED: print(f" - 测试用例失败: {tc_res.test_case_id} ({tc_res.test_case_name})") for vp in tc_res.validation_points: if not vp.passed: print(f" - 验证点: {vp.message}") class APITestOrchestrator: """API测试编排器""" def __init__(self, base_url: str, custom_test_cases_dir: Optional[str] = None, llm_api_key: Optional[str] = None, llm_base_url: Optional[str] = None, llm_model_name: Optional[str] = None, use_llm_for_request_body: bool = False, use_llm_for_path_params: bool = False, use_llm_for_query_params: bool = False, use_llm_for_headers: bool = False ): """ 初始化API测试编排器 Args: base_url: API基础URL custom_test_cases_dir: 存放自定义 APITestCase 的目录路径。如果为 None,则不加载自定义测试用例。 llm_api_key: 大模型服务的API Key。 llm_base_url: 大模型服务的兼容OpenAI的基础URL。 llm_model_name: 要使用的具体模型名称。 use_llm_for_request_body: 是否全局启用LLM生成请求体。 use_llm_for_path_params: 是否全局启用LLM生成路径参数。 use_llm_for_query_params: 是否全局启用LLM生成查询参数。 use_llm_for_headers: 是否全局启用LLM生成头部参数。 """ self.base_url = base_url.rstrip('/') self.logger = logging.getLogger(__name__) # 初始化组件 self.parser = InputParser() self.api_caller = APICaller() self.validator = JSONSchemaValidator() # JSON Schema 验证器,可能会被测试用例内部使用 self.test_case_registry: Optional[TestCaseRegistry] = None if custom_test_cases_dir: self.logger.info(f"初始化 TestCaseRegistry,扫描目录: {custom_test_cases_dir}") try: self.test_case_registry = TestCaseRegistry(test_cases_dir=custom_test_cases_dir) self.logger.info(f"TestCaseRegistry 初始化完成,发现 {len(self.test_case_registry.get_all_test_case_classes())} 个测试用例类。") except Exception as e: self.logger.error(f"初始化 TestCaseRegistry 失败: {e}", exc_info=True) else: self.logger.info("未提供 custom_test_cases_dir,不加载自定义 APITestCase。") # LLM 全局配置开关 self.use_llm_for_request_body = use_llm_for_request_body self.use_llm_for_path_params = use_llm_for_path_params self.use_llm_for_query_params = use_llm_for_query_params self.use_llm_for_headers = use_llm_for_headers self.llm_service: Optional[LLMService] = None if LLMService is None: self.logger.warning("LLMService 类未能导入,LLM 相关功能将完全禁用。") # 强制所有LLM使用为False,并确保服务实例为None self.use_llm_for_request_body = False self.use_llm_for_path_params = False self.use_llm_for_query_params = False self.use_llm_for_headers = False elif llm_api_key and llm_base_url and llm_model_name: # 直接检查配置是否完整 try: self.llm_service = LLMService( api_key=llm_api_key, base_url=llm_base_url, model_name=llm_model_name ) self.logger.info(f"LLMService 已成功初始化,模型: {llm_model_name}。") except ValueError as ve: self.logger.error(f"LLMService 初始化失败 (参数错误): {ve}。LLM相关功能将不可用。") self.llm_service = None # 确保初始化失败时服务为None except Exception as e: self.logger.error(f"LLMService 初始化时发生未知错误: {e}。LLM相关功能将不可用。", exc_info=True) self.llm_service = None # 确保初始化失败时服务为None else: # 如果LLMService类存在,但配置不完整 if LLMService: self.logger.warning("LLMService 类已找到,但未提供完整的LLM配置 (api_key, base_url, model_name)。LLM相关功能将不可用。") # self.llm_service 默认就是 None,无需额外操作 # 新增:端点级别的LLM生成参数缓存 self.llm_endpoint_params_cache: Dict[str, Dict[str, Any]] = {} def _should_use_llm_for_param_type( self, param_type_key: str, # 例如 "path_params", "query_params", "headers", "body" test_case_instance: Optional[BaseAPITestCase] ) -> bool: """ 判断是否应为特定参数类型尝试使用LLM。 结合全局配置和测试用例特定配置。 """ if not self.llm_service: # 如果LLM服务本身就不可用,则肯定不用 return False global_flag = False tc_specific_flag: Optional[bool] = None if param_type_key == "body": global_flag = self.use_llm_for_request_body if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_body elif param_type_key == "path_params": global_flag = self.use_llm_for_path_params if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_path_params elif param_type_key == "query_params": global_flag = self.use_llm_for_query_params if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_query_params elif param_type_key == "headers": global_flag = self.use_llm_for_headers if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_headers else: self.logger.warning(f"未知的参数类型键 '{param_type_key}' 在 _should_use_llm_for_param_type 中检查。") return False # 决定最终是否使用LLM的逻辑: # 1. 如果测试用例明确设置了 (tc_specific_flag is not None),则以测试用例的设置为准。 # 2. 否则,使用全局设置。 final_decision = tc_specific_flag if tc_specific_flag is not None else global_flag # self.logger.debug(f"LLM决策 for '{param_type_key}': TC specific='{tc_specific_flag}', Global='{global_flag}', Final='{final_decision}') return final_decision def _create_pydantic_model_from_schema( self, schema: Dict[str, Any], model_name: str, recursion_depth: int = 0 ) -> Optional[Type[BaseModel]]: """ 动态地从JSON Schema字典创建一个Pydantic模型类。 支持嵌套对象和数组。 Args: schema: JSON Schema字典。 model_name: 要创建的Pydantic模型的名称。 recursion_depth: 当前递归深度,用于防止无限循环。 Returns: 一个Pydantic BaseModel的子类,如果创建失败则返回None。 """ MAX_RECURSION_DEPTH = 10 if recursion_depth > MAX_RECURSION_DEPTH: self.logger.error(f"创建Pydantic模型 '{model_name}' 时达到最大递归深度 {MAX_RECURSION_DEPTH}。可能存在循环引用。") return None # 清理模型名称,使其成为有效的Python标识符 safe_model_name = "".join(c if c.isalnum() or c == '_' else '_' for c in model_name) if not safe_model_name or not safe_model_name[0].isalpha() and safe_model_name[0] != '_': safe_model_name = f"DynamicModel_{safe_model_name}" # 检查缓存 (使用清理后的名称) if safe_model_name in _dynamic_model_cache: self.logger.debug(f"从缓存返回动态模型: {safe_model_name}") return _dynamic_model_cache[safe_model_name] self.logger.debug(f"开始从Schema创建Pydantic模型: '{safe_model_name}' (原始名: '{model_name}', 深度: {recursion_depth})") if not isinstance(schema, dict) or schema.get('type') != 'object': # Safely get type for logging if schema is not a dict or does not have 'type' schema_type_for_log = schema.get('type') if isinstance(schema, dict) else type(schema).__name__ self.logger.error(f"提供的Schema用于模型 '{safe_model_name}' 的必须是 type 'object' 且是一个字典, 实际: {schema_type_for_log}") return None properties = schema.get('properties', {}) required_fields = set(schema.get('required', [])) field_definitions: Dict[str, Tuple[Any, Any]] = {} for prop_name, prop_schema in properties.items(): if not isinstance(prop_schema, dict): self.logger.warning(f"属性 '{prop_name}' 在模型 '{safe_model_name}' 中的Schema无效,已跳过。") continue python_type: Any = Any field_args: Dict[str, Any] = {} default_value: Any = ... # Ellipsis for required fields with no default if 'default' in prop_schema: default_value = prop_schema['default'] elif prop_name not in required_fields: default_value = None if 'description' in prop_schema: field_args['description'] = prop_schema['description'] json_type = prop_schema.get('type') json_format = prop_schema.get('format') if json_type == 'object': nested_model_name_base = f"{safe_model_name}_{prop_name}" python_type = self._create_pydantic_model_from_schema(prop_schema, nested_model_name_base, recursion_depth + 1) if python_type is None: self.logger.warning(f"无法为 '{safe_model_name}' 中的嵌套属性 '{prop_name}' 创建模型,已跳过。") continue elif json_type == 'array': items_schema = prop_schema.get('items') if not isinstance(items_schema, dict): self.logger.warning(f"数组属性 '{prop_name}' 在模型 '{safe_model_name}' 中的 'items' schema无效,已跳过。") continue item_type: Any = Any item_json_type = items_schema.get('type') item_json_format = items_schema.get('format') if item_json_type == 'object': item_model_name_base = f"{safe_model_name}_{prop_name}_Item" item_type = self._create_pydantic_model_from_schema(items_schema, item_model_name_base, recursion_depth + 1) if item_type is None: self.logger.warning(f"无法为 '{safe_model_name}' 中的数组属性 '{prop_name}' 的项创建模型,已跳过。") continue elif item_json_type == 'string': if item_json_format == 'date-time': item_type = dt.datetime elif item_json_format == 'date': item_type = dt.date elif item_json_format == 'email': item_type = EmailStr elif item_json_format == 'uuid': item_type = UUID else: item_type = str elif item_json_type == 'integer': item_type = int elif item_json_type == 'number': item_type = float elif item_json_type == 'boolean': item_type = bool else: self.logger.warning(f"数组 '{prop_name}' 中的项具有未知类型 '{item_json_type}',默认为 Any。") python_type = List[item_type] # type: ignore elif json_type == 'string': if json_format == 'date-time': python_type = dt.datetime elif json_format == 'date': python_type = dt.date elif json_format == 'email': python_type = EmailStr elif json_format == 'uuid': python_type = UUID else: python_type = str if 'minLength' in prop_schema: field_args['min_length'] = prop_schema['minLength'] if 'maxLength' in prop_schema: field_args['max_length'] = prop_schema['maxLength'] if 'pattern' in prop_schema: field_args['pattern'] = prop_schema['pattern'] elif json_type == 'integer': python_type = int if 'minimum' in prop_schema: field_args['ge'] = prop_schema['minimum'] if 'maximum' in prop_schema: field_args['le'] = prop_schema['maximum'] elif json_type == 'number': python_type = float if 'minimum' in prop_schema: field_args['ge'] = prop_schema['minimum'] if 'maximum' in prop_schema: field_args['le'] = prop_schema['maximum'] elif json_type == 'boolean': python_type = bool elif json_type is None and '$ref' in prop_schema: self.logger.warning(f"Schema $ref '{prop_schema['$ref']}' in '{safe_model_name}.{prop_name}' not yet supported. Defaulting to Any.") python_type = Any else: self.logger.warning(f"属性 '{prop_name}' 在模型 '{safe_model_name}' 中具有未知类型 '{json_type}',默认为 Any。") python_type = Any if 'enum' in prop_schema: enum_values = prop_schema['enum'] if enum_values: enum_desc = f" (Enum values: {', '.join(map(str, enum_values))})" field_args['description'] = field_args.get('description', '') + enum_desc current_field_is_optional = prop_name not in required_fields if current_field_is_optional and python_type is not Any and default_value is None: # For Pydantic v1/v2, if a field is not required and has no other default, it's Optional. # The `python_type` itself might already be an `Optional` if it came from a nested optional model. # We only wrap with Optional if it's not already wrapped effectively. # A simple check: if the type name doesn't start with "Optional" if not (hasattr(python_type, '__origin__') and python_type.__origin__ is Union and type(None) in python_type.__args__): python_type = Optional[python_type] field_definitions[prop_name] = (python_type, Field(default_value, **field_args)) if not field_definitions: self.logger.warning(f"模型 '{safe_model_name}' 没有有效的字段定义,无法创建。") # Return a very basic BaseModel if no properties are defined but an object schema was given # This might happen for an empty object schema {} try: EmptyModel = create_model(safe_model_name, __base__=BaseModel) _dynamic_model_cache[safe_model_name] = EmptyModel self.logger.info(f"创建了一个空的动态Pydantic模型: '{safe_model_name}' (由于无属性定义)") return EmptyModel except Exception as e_empty: self.logger.error(f"尝试为 '{safe_model_name}' 创建空模型时失败: {e_empty}", exc_info=True) return None try: # ForwardRef for self-referencing models is complex; not fully handled here yet. # If a type in field_definitions is a string (e.g., a ForwardRef string), create_model handles it. DynamicModel = create_model(safe_model_name, **field_definitions, __base__=BaseModel) # type: ignore _dynamic_model_cache[safe_model_name] = DynamicModel self.logger.info(f"成功创建/缓存了动态Pydantic模型: '{safe_model_name}'") # Attempt to update forward refs if any were string types that are now defined # This is a simplified approach. Pydantic's update_forward_refs is usually called on the module or specific model. # For dynamically created models, this might need careful handling if true circular deps are common. # For now, we assume nested creation order mostly handles dependencies. # if hasattr(DynamicModel, 'update_forward_refs'): # try: # DynamicModel.update_forward_refs(**_dynamic_model_cache) # self.logger.debug(f"Attempted to update forward refs for {safe_model_name}") # except Exception as e_fwd: # self.logger.warning(f"Error updating forward_refs for {safe_model_name}: {e_fwd}") return DynamicModel except Exception as e: self.logger.error(f"使用Pydantic create_model创建 '{safe_model_name}' 时失败: {e}", exc_info=True) return None def _execute_single_test_case( self, test_case_class: Type[BaseAPITestCase], endpoint_spec: Union[YAPIEndpoint, SwaggerEndpoint], # 当前端点的规格 global_api_spec: Union[ParsedYAPISpec, ParsedSwaggerSpec] # 整个API的规格 ) -> ExecutedTestCaseResult: """ 实例化并执行单个APITestCase。 """ tc_start_time = time.time() validation_points: List[ValidationResult] = [] test_case_instance: Optional[BaseAPITestCase] = None endpoint_spec_dict: Dict[str, Any] # 确保 endpoint_spec 转换为字典,以便在测试用例和请求上下文中统一使用 if hasattr(endpoint_spec, 'to_dict') and callable(endpoint_spec.to_dict): endpoint_spec_dict = endpoint_spec.to_dict() elif isinstance(endpoint_spec, dict): # 如果它已经是字典 (例如从 OpenAPI 解析器直接过来) endpoint_spec_dict = endpoint_spec elif isinstance(endpoint_spec, (YAPIEndpoint, SwaggerEndpoint)): # 作为后备,从特定类型提取 self.logger.debug(f"Manually converting endpoint_spec of type {type(endpoint_spec).__name__} to dict.") endpoint_spec_dict = { "method": getattr(endpoint_spec, 'method', 'UNKNOWN_METHOD'), "path": getattr(endpoint_spec, 'path', 'UNKNOWN_PATH'), "title": getattr(endpoint_spec, 'title', getattr(endpoint_spec, 'summary', '')), "summary": getattr(endpoint_spec, 'summary', ''), "description": getattr(endpoint_spec, 'description', ''), "operationId": getattr(endpoint_spec, 'operation_id', f"{getattr(endpoint_spec, 'method', '').upper()}_{getattr(endpoint_spec, 'path', '').replace('/', '_')}"), # 尝试提取参数和请求体 (简化版) "parameters": getattr(endpoint_spec, 'parameters', []) if isinstance(endpoint_spec, SwaggerEndpoint) else (getattr(endpoint_spec, 'req_query', []) + getattr(endpoint_spec, 'req_headers', [])), "requestBody": getattr(endpoint_spec, 'request_body', None) if isinstance(endpoint_spec, SwaggerEndpoint) else getattr(endpoint_spec, 'req_body_other', None), "_original_object_type": type(endpoint_spec).__name__ } else: endpoint_spec_dict = {} self.logger.warning(f"endpoint_spec无法转换为字典,实际类型: {type(endpoint_spec)}") global_api_spec_dict: Dict[str, Any] if hasattr(global_api_spec, 'to_dict') and callable(global_api_spec.to_dict): global_api_spec_dict = global_api_spec.to_dict() elif isinstance(global_api_spec, dict): global_api_spec_dict = global_api_spec else: global_api_spec_dict = {} self.logger.warning(f"global_api_spec无法转换为字典,实际类型: {type(global_api_spec)}") try: test_case_instance = test_case_class( endpoint_spec=endpoint_spec_dict, global_api_spec=global_api_spec_dict ) test_case_instance.logger.info(f"开始执行测试用例 '{test_case_instance.id}' for endpoint '{endpoint_spec_dict.get('method')} {endpoint_spec_dict.get('path')}'") # 调用 _prepare_initial_request_data 时传递 test_case_instance # 并直接解包返回的元组 method, path_params_data, query_params_data, headers_data, body_data = \ self._prepare_initial_request_data(endpoint_spec_dict, test_case_instance=test_case_instance) # 让测试用例有机会修改这些生成的数据 # 注意: BaseAPITestCase 中的 generate_* 方法现在需要传入 endpoint_spec_dict # 因为它们可能需要原始的端点定义来进行更复杂的逻辑 current_q_params = test_case_instance.generate_query_params(query_params_data) current_headers = test_case_instance.generate_headers(headers_data) current_body = test_case_instance.generate_request_body(body_data) # 路径参数通常由编排器根据路径模板和数据最终确定,但如果测试用例要覆盖,可以提供 generate_path_params # 这里我们使用从 _prepare_initial_request_data 返回的 path_params_data 作为基础 current_path_params = test_case_instance.generate_path_params(path_params_data) if hasattr(test_case_instance, 'generate_path_params') and callable(getattr(test_case_instance, 'generate_path_params')) and getattr(test_case_instance, 'generate_path_params').__func__ != BaseAPITestCase.generate_path_params else path_params_data final_url_template = endpoint_spec_dict.get('path', '') final_url = self.base_url + final_url_template for p_name, p_val in current_path_params.items(): placeholder = f"{{{p_name}}}" if placeholder in final_url_template: # 替换基础路径模板中的占位符 final_url = final_url.replace(placeholder, str(p_val)) # 注意: 如果 _prepare_initial_request_data 填充的 final_url 已经包含了 base_url,这里的拼接逻辑需要调整 # 假设 final_url_template 只是 path string e.g. /users/{id} api_request_context = APIRequestContext( method=method, # 使用从 _prepare_initial_request_data 获取的 method url=final_url, path_params=current_path_params, query_params=current_q_params, headers=current_headers, body=current_body, endpoint_spec=endpoint_spec_dict ) validation_points.extend(test_case_instance.validate_request_url(api_request_context.url, api_request_context)) validation_points.extend(test_case_instance.validate_request_headers(api_request_context.headers, api_request_context)) validation_points.extend(test_case_instance.validate_request_body(api_request_context.body, api_request_context)) critical_pre_validation_failure = False failure_messages = [] for vp in validation_points: if not vp.passed and test_case_instance.severity in [TestSeverity.CRITICAL, TestSeverity.HIGH]: # Check severity of the Test Case for pre-validation critical_pre_validation_failure = True failure_messages.append(vp.message) if critical_pre_validation_failure: self.logger.warning(f"测试用例 '{test_case_instance.id}' 因请求预校验失败而中止 (TC严重级别: {test_case_instance.severity.value})。失败信息: {'; '.join(failure_messages)}") tc_duration = time.time() - tc_start_time return ExecutedTestCaseResult( test_case_id=test_case_instance.id, test_case_name=test_case_instance.name, test_case_severity=test_case_instance.severity, status=ExecutedTestCaseResult.Status.FAILED, validation_points=validation_points, message=f"请求预校验失败: {'; '.join(failure_messages)}", duration=tc_duration ) api_request_obj = APIRequest( method=api_request_context.method, url=api_request_context.url, params=api_request_context.query_params, headers=api_request_context.headers, json_data=api_request_context.body ) response_call_start_time = time.time() api_response_obj = self.api_caller.call_api(api_request_obj) response_call_elapsed_time = time.time() - response_call_start_time actual_text_content: Optional[str] = None if hasattr(api_response_obj, 'text_content') and api_response_obj.text_content is not None: actual_text_content = api_response_obj.text_content elif api_response_obj.json_content is not None: if isinstance(api_response_obj.json_content, str): # Should not happen if json_content is parsed actual_text_content = api_response_obj.json_content else: try: actual_text_content = json.dumps(api_response_obj.json_content, ensure_ascii=False) except TypeError: # If json_content is not serializable (e.g. bytes) actual_text_content = str(api_response_obj.json_content) api_response_context = APIResponseContext( status_code=api_response_obj.status_code, headers=api_response_obj.headers, json_content=api_response_obj.json_content, text_content=actual_text_content, elapsed_time=response_call_elapsed_time, original_response= getattr(api_response_obj, 'raw_response', None), # Pass raw if available request_context=api_request_context ) validation_points.extend(test_case_instance.validate_response(api_response_context, api_request_context)) validation_points.extend(test_case_instance.check_performance(api_response_context, api_request_context)) final_status = ExecutedTestCaseResult.Status.PASSED if any(not vp.passed for vp in validation_points): final_status = ExecutedTestCaseResult.Status.FAILED tc_duration = time.time() - tc_start_time return ExecutedTestCaseResult( test_case_id=test_case_instance.id, test_case_name=test_case_instance.name, test_case_severity=test_case_instance.severity, status=final_status, validation_points=validation_points, duration=tc_duration ) except Exception as e: self.logger.error(f"执行测试用例 '{test_case_class.id if test_case_instance else test_case_class.__name__}' 时发生严重错误: {e}", exc_info=True) tc_duration = time.time() - tc_start_time return ExecutedTestCaseResult( test_case_id=test_case_instance.id if test_case_instance else test_case_class.id if hasattr(test_case_class, 'id') else "unknown_tc_id", test_case_name=test_case_instance.name if test_case_instance else test_case_class.name if hasattr(test_case_class, 'name') else "Unknown Test Case Name", test_case_severity=test_case_instance.severity if test_case_instance else TestSeverity.CRITICAL, status=ExecutedTestCaseResult.Status.ERROR, validation_points=validation_points, message=f"测试用例执行时发生内部错误: {str(e)}", duration=tc_duration ) def _prepare_initial_request_data( self, endpoint_spec: Dict[str, Any], test_case_instance: Optional[BaseAPITestCase] = None ) -> Tuple[str, Dict[str, Any], Dict[str, Any], Dict[str, Any], Optional[Any]]: """ 根据OpenAPI端点规格和测试用例实例准备初始请求数据。 包含端点级别的LLM参数缓存逻辑。 """ method = endpoint_spec.get("method", "get").upper() operation_id = endpoint_spec.get("operationId", f"{method}_{endpoint_spec.get('path', '')}") endpoint_cache_key = f"{method}_{endpoint_spec.get('path', '')}" self.logger.info(f"[{operation_id}] 开始为端点 {endpoint_cache_key} 准备初始请求数据 (TC: {test_case_instance.id if test_case_instance else 'N/A'})") # 尝试从缓存加载参数 if endpoint_cache_key in self.llm_endpoint_params_cache: cached_params = self.llm_endpoint_params_cache[endpoint_cache_key] self.logger.info(f"[{operation_id}] 从缓存加载了端点 '{endpoint_cache_key}' 的LLM参数。") # 直接从缓存中获取各类参数,如果存在的话 path_params_data = cached_params.get("path_params", {}) query_params_data = cached_params.get("query_params", {}) headers_data = cached_params.get("headers", {}) body_data = cached_params.get("body") # Body可能是None # 即使从缓存加载,仍需确保默认头部(如Accept, Content-Type)存在或被正确设置 # Content-Type应基于body_data是否存在来决定 default_headers = {"Accept": "application/json"} if body_data is not None and method not in ["GET", "DELETE", "HEAD", "OPTIONS"]: default_headers["Content-Type"] = "application/json" headers_data = {**default_headers, **headers_data} # 合并,缓存中的优先 self.logger.debug(f"[{operation_id}] (缓存加载) 准备的请求数据: method={method}, path_params={path_params_data}, query_params={query_params_data}, headers={list(headers_data.keys())}, body_type={type(body_data).__name__}") return method, path_params_data, query_params_data, headers_data, body_data # 缓存未命中,需要生成参数 self.logger.info(f"[{operation_id}] 端点 '{endpoint_cache_key}' 的参数未在缓存中找到,开始生成。") generated_params_for_endpoint: Dict[str, Any] = {} path_params_data: Dict[str, Any] = {} query_params_data: Dict[str, Any] = {} headers_data_generated: Dict[str, Any] = {} # LLM或常规生成的,不含默认 body_data: Optional[Any] = None # 提取各类参数的定义列表 path_params_spec_list = [p for p in endpoint_spec.get("parameters", []) if p.get("in") == "path"] query_params_spec_list = [p for p in endpoint_spec.get("parameters", []) if p.get("in") == "query"] headers_spec_list = [p for p in endpoint_spec.get("parameters", []) if p.get("in") == "header"] request_body_spec = endpoint_spec.get("requestBody", {}).get("content", {}).get("application/json", {}).get("schema") # --- 1. 处理路径参数 --- param_type_key = "path_params" if self._should_use_llm_for_param_type(param_type_key, test_case_instance) and path_params_spec_list: self.logger.info(f"[{operation_id}] 尝试使用LLM生成路径参数。") object_schema, model_name = self._build_object_schema_for_params(path_params_spec_list, f"DynamicPathParamsFor_{operation_id}") if object_schema and model_name: try: PydanticModel = self._create_pydantic_model_from_schema(object_schema, model_name) if PydanticModel: llm_generated = self.llm_service.generate_parameters_from_schema( PydanticModel, prompt_instruction=f"Generate valid path parameters for API operation: {operation_id}. Description: {endpoint_spec.get('description', '') or endpoint_spec.get('summary', 'N/A')}" ) if isinstance(llm_generated, dict): path_params_data = llm_generated self.logger.info(f"[{operation_id}] LLM成功生成路径参数: {path_params_data}") else: self.logger.warning(f"[{operation_id}] LLM为路径参数返回了非字典类型: {type(llm_generated)}。回退到常规生成。") path_params_data = self._generate_params_from_list(path_params_spec_list, operation_id, "path") else: path_params_data = self._generate_params_from_list(path_params_spec_list, operation_id, "path") except Exception as e: self.logger.error(f"[{operation_id}] LLM生成路径参数失败: {e}。回退到常规生成。", exc_info=True) path_params_data = self._generate_params_from_list(path_params_spec_list, operation_id, "path") else: # _build_object_schema_for_params 返回 None path_params_data = self._generate_params_from_list(path_params_spec_list, operation_id, "path") else: # 不使用LLM或LLM服务不可用,或者 path_params_spec_list 为空但仍需确保path_params_data被赋值 if self._should_use_llm_for_param_type(param_type_key, test_case_instance) and not path_params_spec_list: self.logger.info(f"[{operation_id}] 配置为路径参数使用LLM,但没有定义路径参数规格。") # 对于不使用LLM或LLM不适用的情况,或者 spec_list 为空的情况,都执行常规生成(如果 spec_list 非空则会记录) if path_params_spec_list and not self._should_use_llm_for_param_type(param_type_key, test_case_instance): self.logger.info(f"[{operation_id}] 使用常规方法或LLM未启用,为路径参数。") path_params_data = self._generate_params_from_list(path_params_spec_list, operation_id, "path") generated_params_for_endpoint[param_type_key] = path_params_data # --- 2. 处理查询参数 --- param_type_key = "query_params" if self._should_use_llm_for_param_type(param_type_key, test_case_instance) and query_params_spec_list: self.logger.info(f"[{operation_id}] 尝试使用LLM生成查询参数。") object_schema, model_name = self._build_object_schema_for_params(query_params_spec_list, f"DynamicQueryParamsFor_{operation_id}") if object_schema and model_name: try: PydanticModel = self._create_pydantic_model_from_schema(object_schema, model_name) if PydanticModel: llm_generated = self.llm_service.generate_parameters_from_schema( PydanticModel, prompt_instruction=f"Generate valid query parameters for API operation: {operation_id}. Description: {endpoint_spec.get('description', '') or endpoint_spec.get('summary', 'N/A')}" ) if isinstance(llm_generated, dict): query_params_data = llm_generated self.logger.info(f"[{operation_id}] LLM成功生成查询参数: {query_params_data}") else: self.logger.warning(f"[{operation_id}] LLM为查询参数返回了非字典类型: {type(llm_generated)}。回退到常规生成。") query_params_data = self._generate_params_from_list(query_params_spec_list, operation_id, "query") else: query_params_data = self._generate_params_from_list(query_params_spec_list, operation_id, "query") except Exception as e: self.logger.error(f"[{operation_id}] LLM生成查询参数失败: {e}。回退到常规生成。", exc_info=True) query_params_data = self._generate_params_from_list(query_params_spec_list, operation_id, "query") else: # _build_object_schema_for_params 返回 None query_params_data = self._generate_params_from_list(query_params_spec_list, operation_id, "query") else: # 不使用LLM或LLM服务不可用,或者 query_params_spec_list 为空 if self._should_use_llm_for_param_type(param_type_key, test_case_instance) and not query_params_spec_list: self.logger.info(f"[{operation_id}] 配置为查询参数使用LLM,但没有定义查询参数规格。") if query_params_spec_list and not self._should_use_llm_for_param_type(param_type_key, test_case_instance): self.logger.info(f"[{operation_id}] 使用常规方法或LLM未启用,为查询参数。") query_params_data = self._generate_params_from_list(query_params_spec_list, operation_id, "query") generated_params_for_endpoint[param_type_key] = query_params_data # --- 3. 处理头部参数 --- param_type_key = "headers" if self._should_use_llm_for_param_type(param_type_key, test_case_instance) and headers_spec_list: self.logger.info(f"[{operation_id}] 尝试使用LLM生成头部参数。") object_schema, model_name = self._build_object_schema_for_params(headers_spec_list, f"DynamicHeadersFor_{operation_id}") if object_schema and model_name: try: PydanticModel = self._create_pydantic_model_from_schema(object_schema, model_name) if PydanticModel: llm_generated = self.llm_service.generate_parameters_from_schema( PydanticModel, prompt_instruction=f"Generate valid HTTP headers for API operation: {operation_id}. Description: {endpoint_spec.get('description', '') or endpoint_spec.get('summary', 'N/A')}" ) if isinstance(llm_generated, dict): headers_data_generated = llm_generated # Store LLM generated ones separately first self.logger.info(f"[{operation_id}] LLM成功生成头部参数: {headers_data_generated}") else: self.logger.warning(f"[{operation_id}] LLM为头部参数返回了非字典类型: {type(llm_generated)}。回退到常规生成。") headers_data_generated = self._generate_params_from_list(headers_spec_list, operation_id, "header") else: headers_data_generated = self._generate_params_from_list(headers_spec_list, operation_id, "header") except Exception as e: self.logger.error(f"[{operation_id}] LLM生成头部参数失败: {e}。回退到常规生成。", exc_info=True) headers_data_generated = self._generate_params_from_list(headers_spec_list, operation_id, "header") else: # _build_object_schema_for_params 返回 None headers_data_generated = self._generate_params_from_list(headers_spec_list, operation_id, "header") else: # 不使用LLM或LLM服务不可用,或者 headers_spec_list 为空 if self._should_use_llm_for_param_type(param_type_key, test_case_instance) and not headers_spec_list: self.logger.info(f"[{operation_id}] 配置为头部参数使用LLM,但没有定义头部参数规格。") if headers_spec_list and not self._should_use_llm_for_param_type(param_type_key, test_case_instance): self.logger.info(f"[{operation_id}] 使用常规方法或LLM未启用,为头部参数。") headers_data_generated = self._generate_params_from_list(headers_spec_list, operation_id, "header") generated_params_for_endpoint[param_type_key] = headers_data_generated # --- 4. 处理请求体 --- param_type_key = "body" if self._should_use_llm_for_param_type(param_type_key, test_case_instance) and request_body_spec: self.logger.info(f"[{operation_id}] 尝试使用LLM生成请求体。") model_name = f"DynamicBodyFor_{operation_id}" try: PydanticModel = self._create_pydantic_model_from_schema(request_body_spec, model_name) if PydanticModel: llm_generated_body = self.llm_service.generate_parameters_from_schema( PydanticModel, prompt_instruction=f"Generate a valid JSON request body for API operation: {operation_id}. Description: {endpoint_spec.get('description', '') or endpoint_spec.get('summary', 'N/A')}. Schema: {json.dumps(request_body_spec, indent=2)}" ) if isinstance(llm_generated_body, dict): try: body_data = PydanticModel(**llm_generated_body).model_dump(by_alias=True) self.logger.info(f"[{operation_id}] LLM成功生成并验证请求体。") except ValidationError as ve: self.logger.error(f"[{operation_id}] LLM生成的请求体未能通过Pydantic模型验证: {ve}。回退到常规生成。") body_data = self._generate_data_from_schema(request_body_spec, "requestBody", operation_id) elif isinstance(llm_generated_body, BaseModel): # LLM直接返回模型实例 body_data = llm_generated_body.model_dump(by_alias=True) self.logger.info(f"[{operation_id}] LLM成功生成请求体 (模型实例)。") else: self.logger.warning(f"[{operation_id}] LLM为请求体返回了非预期类型: {type(llm_generated_body)}。回退到常规生成。") body_data = self._generate_data_from_schema(request_body_spec, "requestBody", operation_id) else: # _create_pydantic_model_from_schema 返回 None self.logger.warning(f"[{operation_id}] 未能为请求体创建Pydantic模型。回退到常规生成。") body_data = self._generate_data_from_schema(request_body_spec, "requestBody", operation_id) except Exception as e: self.logger.error(f"[{operation_id}] LLM生成请求体失败: {e}。回退到常规生成。", exc_info=True) body_data = self._generate_data_from_schema(request_body_spec, "requestBody", operation_id) elif request_body_spec: # 不使用LLM但有body spec self.logger.info(f"[{operation_id}] 使用常规方法或LLM未启用/不适用,为请求体。") body_data = self._generate_data_from_schema(request_body_spec, "requestBody", operation_id) else: # 没有requestBody定义 self.logger.info(f"[{operation_id}] 端点没有定义请求体。") body_data = None # 明确设为None generated_params_for_endpoint[param_type_key] = body_data # 合并最终的头部 (默认头部 + 生成的头部) final_headers = {"Accept": "application/json"} if body_data is not None and method not in ["GET", "DELETE", "HEAD", "OPTIONS"]: final_headers["Content-Type"] = "application/json" final_headers.update(headers_data_generated) # headers_data_generated 是从LLM或常规生成的 # 将本次生成的所有参数存入缓存 self.llm_endpoint_params_cache[endpoint_cache_key] = generated_params_for_endpoint self.logger.info(f"[{operation_id}] 端点 '{endpoint_cache_key}' 的参数已生成并存入缓存。") # 确保路径参数中的值都是字符串 (URL部分必须是字符串) path_params_data_str = {k: str(v) if v is not None else "" for k, v in path_params_data.items()} self.logger.debug(f"[{operation_id}] (新生成) 准备的请求数据: method={method}, path_params={path_params_data_str}, query_params={query_params_data}, headers={list(final_headers.keys())}, body_type={type(body_data).__name__}") return method, path_params_data_str, query_params_data, final_headers, body_data def _build_object_schema_for_params(self, params_spec_list: List[Dict[str, Any]], model_name_base: str) -> Tuple[Optional[Dict[str, Any]], str]: """ 将参数列表 (如路径参数、查询参数列表) 转换为一个单一的 "type: object" JSON schema, 以便用于创建 Pydantic 模型。 会尝试适配参数定义中缺少嵌套 'schema' 字段但有顶层 'type' 的情况。 """ if not params_spec_list: return None, model_name_base properties = {} required_params = [] parameter_names = [] for param_spec in params_spec_list: param_name = param_spec.get("name") if not param_name: self.logger.warning(f"参数定义缺少 'name' 字段: {param_spec}。已跳过。") continue parameter_names.append(param_name) param_schema = param_spec.get("schema") # ---- 适配开始 ---- if not param_schema and param_spec.get("type"): self.logger.debug(f"参数 '{param_name}' 缺少嵌套 'schema' 字段,尝试从顶层 'type' 构建临时schema。 Param spec: {param_spec}") temp_schema = {"type": param_spec.get("type")} # 从 param_spec 顶层提取其他相关字段到 temp_schema for key in ["format", "default", "example", "description", "enum", "minimum", "maximum", "minLength", "maxLength", "pattern", "items"]: # items 用于处理顶层定义的array if key in param_spec: temp_schema[key] = param_spec[key] param_schema = temp_schema # ---- 适配结束 ---- if not param_schema: # 如果适配后仍然没有schema self.logger.warning(f"参数 '{param_name}' 缺少 'schema' 定义且无法从顶层构建: {param_spec}。已跳过。") continue # 处理 $ref (简单情况,假设ref在components.schemas) # 更复杂的 $ref 解析可能需要访问完整的OpenAPI文档 if isinstance(param_schema, dict) and "$ref" in param_schema: # 确保 param_schema 是字典再检查 $ref ref_path = param_schema["$ref"] # 这是一个非常简化的$ref处理,实际可能需要解析整个文档 self.logger.warning(f"参数 '{param_name}' 的 schema 包含 $ref '{ref_path}',当前不支持自动解析。请确保schema是内联的。") # 可以尝试提供一个非常基础的schema,或者跳过这个参数,或者让_generate_data_from_schema处理 properties[param_name] = {"type": "string", "description": f"Reference to {ref_path}"} elif isinstance(param_schema, dict): # 确保 param_schema 是字典 properties[param_name] = param_schema else: self.logger.warning(f"参数 '{param_name}' 的 schema 不是一个有效的字典: {param_schema}。已跳过。") continue if param_spec.get("required", False): required_params.append(param_name) if not properties: # 如果所有参数都无效 return None, model_name_base model_name = f"{model_name_base}_{'_'.join(sorted(parameter_names))}" # 使模型名更具唯一性 object_schema = { "type": "object", "properties": properties, } if required_params: object_schema["required"] = required_params self.logger.debug(f"[{model_name_base}] 为参数集 {parameter_names} 构建的最终 Object Schema: {json.dumps(object_schema, indent=2)}, 模型名: {model_name}") return object_schema, model_name def _generate_params_from_list(self, params_spec_list: List[Dict[str, Any]], operation_id: str, param_type: str) -> Dict[str, Any]: """ 遍历参数定义列表,使用 _generate_data_from_schema 为每个参数生成数据。 会尝试适配参数定义中缺少嵌套 'schema' 字段但有顶层 'type' 的情况。 """ generated_params: Dict[str, Any] = {} if not params_spec_list: self.logger.info(f"[{operation_id}] 没有定义 {param_type} 参数。") return generated_params self.logger.info(f"[{operation_id}] 使用常规方法生成 {param_type} 参数。") for param_spec in params_spec_list: param_name = param_spec.get("name") param_schema = param_spec.get("schema") # ---- 适配开始 ---- if not param_schema and param_spec.get("type"): self.logger.debug(f"参数 '{param_name}' ('{param_type}' 类型) 缺少嵌套 'schema' 字段,尝试从顶层 'type' 构建临时schema用于常规生成。 Param spec: {param_spec}") temp_schema = {"type": param_spec.get("type")} # 从 param_spec 顶层提取其他相关字段到 temp_schema for key in ["format", "default", "example", "description", "enum", "minimum", "maximum", "minLength", "maxLength", "pattern", "items"]: # items 用于处理顶层定义的array if key in param_spec: temp_schema[key] = param_spec[key] param_schema = temp_schema # ---- 适配结束 ---- if param_name and param_schema and isinstance(param_schema, dict): # 确保param_schema是字典 generated_value = self._generate_data_from_schema( param_schema, context_name=f"{param_type} parameter '{param_name}'", operation_id=operation_id ) if generated_value is not None: generated_params[param_name] = generated_value elif param_spec.get("required"): self.logger.warning(f"[{operation_id}] 未能为必需的 {param_type} 参数 '{param_name}' 生成数据 (schema: {param_schema}),且其 schema 中可能没有有效的默认值或示例。") else: self.logger.warning(f"[{operation_id}] 跳过无效的 {param_type} 参数定义 (名称: {param_name}, schema: {param_schema}): {param_spec}") self.logger.info(f"[{operation_id}] 常规方法生成的 {param_type} 参数: {generated_params}") return generated_params def run_test_for_endpoint(self, endpoint: Union[YAPIEndpoint, SwaggerEndpoint], global_api_spec: Union[ParsedYAPISpec, ParsedSwaggerSpec] ) -> TestResult: endpoint_id = f"{getattr(endpoint, 'method', 'GET').upper()} {getattr(endpoint, 'path', '/')}" endpoint_name = getattr(endpoint, 'title', '') or getattr(endpoint, 'summary', '') or endpoint_id self.logger.info(f"开始为端点测试: {endpoint_id} ({endpoint_name})") endpoint_test_result = TestResult( endpoint_id=endpoint_id, endpoint_name=endpoint_name, ) if not self.test_case_registry: self.logger.warning(f"TestCaseRegistry 未初始化,无法为端点 '{endpoint_id}' 执行自定义测试用例。") endpoint_test_result.overall_status = TestResult.Status.SKIPPED endpoint_test_result.error_message = "TestCaseRegistry 未初始化。" endpoint_test_result.finalize_endpoint_test() return endpoint_test_result applicable_test_case_classes = self.test_case_registry.get_applicable_test_cases( endpoint_method=endpoint.method.upper(), endpoint_path=endpoint.path ) if not applicable_test_case_classes: self.logger.info(f"端点 '{endpoint_id}' 没有找到适用的自定义测试用例。") endpoint_test_result.finalize_endpoint_test() return endpoint_test_result self.logger.info(f"端点 '{endpoint_id}' 发现了 {len(applicable_test_case_classes)} 个适用的测试用例: {[tc.id for tc in applicable_test_case_classes]}") for tc_class in applicable_test_case_classes: self.logger.debug(f"准备执行测试用例 '{tc_class.id}' for '{endpoint_id}'") executed_case_result = self._execute_single_test_case( test_case_class=tc_class, endpoint_spec=endpoint, global_api_spec=global_api_spec ) endpoint_test_result.add_executed_test_case_result(executed_case_result) self.logger.debug(f"测试用例 '{tc_class.id}' 执行完毕,状态: {executed_case_result.status.value}") endpoint_test_result.finalize_endpoint_test() self.logger.info(f"端点 '{endpoint_id}' 测试完成,最终状态: {endpoint_test_result.overall_status.value}") return endpoint_test_result def run_tests_from_yapi(self, yapi_file_path: str, categories: Optional[List[str]] = None, custom_test_cases_dir: Optional[str] = None ) -> TestSummary: if custom_test_cases_dir and (not self.test_case_registry or self.test_case_registry.test_cases_dir != custom_test_cases_dir): self.logger.info(f"从 run_tests_from_yapi 使用新的目录重新初始化 TestCaseRegistry: {custom_test_cases_dir}") try: self.test_case_registry = TestCaseRegistry(test_cases_dir=custom_test_cases_dir) self.logger.info(f"TestCaseRegistry (re)initialization complete, found {len(self.test_case_registry.get_all_test_case_classes())} test case classes.") except Exception as e: self.logger.error(f"从 run_tests_from_yapi 重新初始化 TestCaseRegistry 失败: {e}", exc_info=True) self.logger.info(f"从YAPI文件加载API定义: {yapi_file_path}") parsed_yapi = self.parser.parse_yapi_spec(yapi_file_path) summary = TestSummary() if not parsed_yapi: self.logger.error(f"解析YAPI文件失败: {yapi_file_path}") summary.finalize_summary() return summary endpoints_to_test = parsed_yapi.endpoints if categories: endpoints_to_test = [ep for ep in endpoints_to_test if ep.category_name in categories] summary.set_total_endpoints_defined(len(endpoints_to_test)) total_applicable_tcs = 0 if self.test_case_registry: for endpoint_spec in endpoints_to_test: total_applicable_tcs += len( self.test_case_registry.get_applicable_test_cases( endpoint_spec.method.upper(), endpoint_spec.path ) ) summary.set_total_test_cases_applicable(total_applicable_tcs) for endpoint in endpoints_to_test: result = self.run_test_for_endpoint(endpoint, global_api_spec=parsed_yapi) summary.add_endpoint_result(result) summary.finalize_summary() return summary def run_tests_from_swagger(self, swagger_file_path: str, tags: Optional[List[str]] = None, custom_test_cases_dir: Optional[str] = None ) -> TestSummary: if custom_test_cases_dir and (not self.test_case_registry or self.test_case_registry.test_cases_dir != custom_test_cases_dir): self.logger.info(f"从 run_tests_from_swagger 使用新的目录重新初始化 TestCaseRegistry: {custom_test_cases_dir}") try: self.test_case_registry = TestCaseRegistry(test_cases_dir=custom_test_cases_dir) self.logger.info(f"TestCaseRegistry (re)initialization complete, found {len(self.test_case_registry.get_all_test_case_classes())} test case classes.") except Exception as e: self.logger.error(f"从 run_tests_from_swagger 重新初始化 TestCaseRegistry 失败: {e}", exc_info=True) self.logger.info(f"从Swagger文件加载API定义: {swagger_file_path}") parsed_swagger = self.parser.parse_swagger_spec(swagger_file_path) summary = TestSummary() if not parsed_swagger: self.logger.error(f"解析Swagger文件失败: {swagger_file_path}") summary.finalize_summary() return summary endpoints_to_test = parsed_swagger.endpoints if tags: endpoints_to_test = [ep for ep in endpoints_to_test if any(tag in ep.tags for tag in tags)] summary.set_total_endpoints_defined(len(endpoints_to_test)) total_applicable_tcs = 0 if self.test_case_registry: for endpoint_spec in endpoints_to_test: total_applicable_tcs += len( self.test_case_registry.get_applicable_test_cases( endpoint_spec.method.upper(), endpoint_spec.path ) ) summary.set_total_test_cases_applicable(total_applicable_tcs) for endpoint in endpoints_to_test: result = self.run_test_for_endpoint(endpoint, global_api_spec=parsed_swagger) summary.add_endpoint_result(result) summary.finalize_summary() return summary def _generate_data_from_schema(self, schema: Dict[str, Any], context_name: Optional[str] = None, operation_id: Optional[str] = None) -> Any: """ 根据JSON Schema生成测试数据 (此方法基本保持不变,可能被测试用例或编排器内部使用) 增加了 context_name 和 operation_id 用于更详细的日志。 """ log_prefix = f"[{operation_id}] " if operation_id else "" context_log = f" (context: {context_name})" if context_name else "" if not schema or not isinstance(schema, dict): self.logger.debug(f"{log_prefix}_generate_data_from_schema: 提供的 schema 无效或为空{context_log}: {schema}") return None schema_type = schema.get('type') if 'example' in schema: self.logger.debug(f"{log_prefix}使用 schema 中的 'example' 值 for{context_log}: {schema['example']}") return schema['example'] if 'default' in schema: self.logger.debug(f"{log_prefix}使用 schema 中的 'default' 值 for{context_log}: {schema['default']}") return schema['default'] if schema_type == 'object': result = {} properties = schema.get('properties', {}) self.logger.debug(f"{log_prefix}生成 object 类型数据 for{context_log}. Properties: {list(properties.keys())}") for prop_name, prop_schema in properties.items(): # 递归调用时传递上下文,但稍微修改一下 context_name nested_context = f"{context_name}.{prop_name}" if context_name else prop_name result[prop_name] = self._generate_data_from_schema(prop_schema, nested_context, operation_id) return result if result else {} elif schema_type == 'array': items_schema = schema.get('items', {}) min_items = schema.get('minItems', 1 if schema.get('default') is None and schema.get('example') is None else 0) self.logger.debug(f"{log_prefix}生成 array 类型数据 for{context_log}. Items schema: {items_schema}, minItems: {min_items}") if min_items == 0 and (schema.get('default') == [] or schema.get('example') == []): return [] num_items_to_generate = max(1, min_items) generated_array = [] for i in range(num_items_to_generate): item_context = f"{context_name}[{i}]" if context_name else f"array_item[{i}]" generated_array.append(self._generate_data_from_schema(items_schema, item_context, operation_id)) return generated_array elif schema_type == 'string': string_format = schema.get('format', '') val = None if 'enum' in schema and schema['enum']: val = schema['enum'][0] elif string_format == 'date': val = '2023-01-01' elif string_format == 'date-time': val = datetime.datetime.now().isoformat() elif string_format == 'email': val = 'test@example.com' elif string_format == 'uuid': import uuid; val = str(uuid.uuid4()) else: val = 'example_string' self.logger.debug(f"{log_prefix}生成 string 类型数据 ('{string_format}') for{context_log}: {val}") return val elif schema_type == 'number' or schema_type == 'integer': val_to_return = schema.get('default', schema.get('example')) if val_to_return is not None: self.logger.debug(f"{log_prefix}使用 number/integer 的 default/example 值 for{context_log}: {val_to_return}") return val_to_return minimum = schema.get('minimum') # maximum = schema.get('maximum') # Not used yet for generation, but could be if minimum is not None: val_to_return = minimum else: val_to_return = 0 if schema_type == 'integer' else 0.0 self.logger.debug(f"{log_prefix}生成 number/integer 类型数据 for{context_log}: {val_to_return}") return val_to_return elif schema_type == 'boolean': val = schema.get('default', schema.get('example', False)) self.logger.debug(f"{log_prefix}生成 boolean 类型数据 for{context_log}: {val}") return val elif schema_type == 'null': self.logger.debug(f"{log_prefix}生成 null 类型数据 for{context_log}") return None self.logger.debug(f"{log_prefix}_generate_data_from_schema: 未知或不支持的 schema 类型 '{schema_type}' for{context_log}. Schema: {schema}") return None