""" 测试编排器模块 负责组合API解析器、API调用器、验证器和规则执行器,进行端到端的API测试 """ import logging import json import time import re # 添加 re 模块导入 from typing import Dict, List, Any, Optional, Union, Tuple, Type, ForwardRef from enum import Enum import datetime import datetime as dt from uuid import UUID from dataclasses import asdict as dataclass_asdict, is_dataclass # New import import copy from pydantic import BaseModel, Field, create_model from pydantic.networks import EmailStr from .input_parser.parser import InputParser, YAPIEndpoint, SwaggerEndpoint, ParsedYAPISpec, ParsedSwaggerSpec from .api_caller.caller import APICaller, APIRequest, APIResponse from .json_schema_validator.validator import JSONSchemaValidator from .test_framework_core import ValidationResult, TestSeverity, APIRequestContext, APIResponseContext, BaseAPITestCase from .test_case_registry import TestCaseRegistry # 尝试导入 utils.schema_utils from .utils import schema_utils from .utils.common_utils import format_url_with_path_params # 新增导入 # 尝试导入 LLMService,如果失败则允许,因为 LLM 功能是可选的 try: from .llm_utils.llm_service import LLMService except ImportError: LLMService = None logging.getLogger(__name__).info("LLMService 未找到,LLM 相关功能将不可用。") # Cache for dynamically created Pydantic models to avoid redefinition issues _dynamic_model_cache: Dict[str, Type[BaseModel]] = {} class ExecutedTestCaseResult: """存储单个APITestCase在其适用的端点上执行后的结果。""" class Status(str, Enum): """单个测试用例的执行状态枚举""" PASSED = "通过" FAILED = "失败" ERROR = "执行错误" # 指测试用例代码本身出错,而不是API验证失败 SKIPPED = "跳过" # 如果测试用例因某些条件被跳过执行 def __init__(self, test_case_id: str, test_case_name: str, test_case_severity: TestSeverity, status: Status, validation_points: List[ValidationResult], message: str = "", # 总体消息,例如执行错误时的错误信息 duration: float = 0.0): self.test_case_id = test_case_id self.test_case_name = test_case_name self.test_case_severity = test_case_severity self.status = status self.validation_points = validation_points or [] self.message = message self.duration = duration # 执行此测试用例的耗时 self.timestamp = datetime.datetime.now() def to_dict(self) -> Dict[str, Any]: message="" if self.message: message = self.message else: message= ";".join([vp.message for vp in self.validation_points]) return { "test_case_id": self.test_case_id, "test_case_name": self.test_case_name, "test_case_severity": self.test_case_severity.value, # 使用枚举值 "status": self.status.value, "message": message, "duration_seconds": self.duration, "timestamp": self.timestamp.isoformat(), "validation_points": [vp.details if vp.details else {"passed": vp.passed, "message": vp.message} for vp in self.validation_points] } class TestResult: # 原来的 TestResult 被重构为 EndpointExecutionResult """ 存储对单个API端点执行所有适用APITestCase后的整体测试结果。 (此类替换了旧的 TestResult 的角色,并进行了结构调整) """ class Status(str, Enum): # 这个枚举保持不变,但其含义现在是端点的整体状态 """端点测试状态枚举""" PASSED = "通过" # 所有关键测试用例通过 FAILED = "失败" # 任何一个关键测试用例失败 ERROR = "错误" # 测试执行过程中出现错误(非API本身错误,而是测试代码或环境) SKIPPED = "跳过" # 如果整个端点的测试被跳过 PARTIAL_SUCCESS = "部分成功" # 一些非关键测试用例失败,但关键的通过 def __init__(self, endpoint_id: str, # 通常是 method + path endpoint_name: str, # API 的可读名称/标题 overall_status: Status = Status.SKIPPED, # 默认为跳过,后续根据测试用例结果更新 start_time: Optional[datetime.datetime] = None ): self.endpoint_id = endpoint_id self.endpoint_name = endpoint_name self.overall_status = overall_status self.executed_test_cases: List[ExecutedTestCaseResult] = [] self.start_time = start_time if start_time else datetime.datetime.now() self.end_time: Optional[datetime.datetime] = None self.error_message: Optional[str] = None # 如果整个端点测试出错,记录错误信息 self.message: Optional[str] = None def add_executed_test_case_result(self, result: ExecutedTestCaseResult): self.executed_test_cases.append(result) def finalize_endpoint_test(self): self.end_time = datetime.datetime.now() # 根据所有 executed_test_cases 的状态和严重性来计算 overall_status if not self.executed_test_cases and self.overall_status == TestResult.Status.SKIPPED : # 如果没有执行任何测试用例且状态仍为初始的SKIPPED pass # 保持 SKIPPED elif any(tc.status == ExecutedTestCaseResult.Status.ERROR for tc in self.executed_test_cases): self.overall_status = TestResult.Status.ERROR # 可以考虑将第一个遇到的ERROR的message赋给self.error_message first_error = next((tc.message for tc in self.executed_test_cases if tc.status == ExecutedTestCaseResult.Status.ERROR), None) if first_error: self.error_message = f"测试用例执行错误: {first_error}" else: # 筛选出失败的测试用例 failed_tcs = [tc for tc in self.executed_test_cases if tc.status == ExecutedTestCaseResult.Status.FAILED] if not failed_tcs: if not self.executed_test_cases: # 如果没有执行任何测试用例但又不是SKIPPED,可能也算某种形式的错误或特殊通过 self.overall_status = TestResult.Status.PASSED # 或者定义一个"NO_CASES_RUN"状态 else: self.overall_status = TestResult.Status.PASSED else: # 检查失败的测试用例中是否有CRITICAL或HIGH严重级别的 if any(tc.test_case_severity in [TestSeverity.CRITICAL, TestSeverity.HIGH] for tc in failed_tcs): self.overall_status = TestResult.Status.FAILED else: # 所有失败的都是 MEDIUM, LOW, INFO self.overall_status = TestResult.Status.PARTIAL_SUCCESS if not self.executed_test_cases and self.overall_status not in [TestResult.Status.SKIPPED, TestResult.Status.ERROR]: # 如果没有执行测试用例,并且不是因为错误或明确跳过,这可能是一个配置问题或意外情况 self.overall_status = TestResult.Status.ERROR # 或者一个更特定的状态 self.error_message = "没有为该端点找到或执行任何适用的测试用例。" @property def duration(self) -> float: if self.start_time and self.end_time: return (self.end_time - self.start_time).total_seconds() return 0.0 def to_dict(self) -> Dict[str, Any]: data = { "endpoint_id": self.endpoint_id, "endpoint_name": self.endpoint_name, "overall_status": self.overall_status.value, "duration_seconds": self.duration, "start_time": self.start_time.isoformat() if self.start_time else None, "end_time": self.end_time.isoformat() if self.end_time else None, "executed_test_cases": [tc.to_dict() for tc in self.executed_test_cases] } if self.error_message: data["error_message"] = self.error_message return data class TestSummary: """测试结果摘要 (已更新以适应新的结果结构)""" def __init__(self): self.total_endpoints_defined: int = 0 # YAPI/Swagger中定义的端点总数 self.total_endpoints_tested: int = 0 # 实际执行了测试的端点数量 (至少有一个测试用例被执行) self.endpoints_passed: int = 0 self.endpoints_failed: int = 0 self.endpoints_partial_success: int = 0 self.endpoints_error: int = 0 self.endpoints_skipped: int = 0 # 由于配置或过滤器,整个端点被跳过测试 self.total_test_cases_applicable: int = 0 # 所有端点上适用测试用例的总和 self.total_test_cases_executed: int = 0 # 所有端点上实际执行的测试用例总数 self.test_cases_passed: int = 0 self.test_cases_failed: int = 0 self.test_cases_error: int = 0 # 测试用例代码本身出错 self.test_cases_skipped_in_endpoint: int = 0 # 测试用例在端点执行中被跳过 self.start_time = datetime.datetime.now() self.end_time: Optional[datetime.datetime] = None self.detailed_results: List[TestResult] = [] # 将存储新的 TestResult (EndpointExecutionResult) 对象 def add_endpoint_result(self, result: TestResult): # result 现在是新的 TestResult 类型 self.detailed_results.append(result) if result.executed_test_cases or result.overall_status not in [TestResult.Status.SKIPPED, TestResult.Status.ERROR]: # 只有实际尝试了测试的端点才算tested if not (len(result.executed_test_cases) == 0 and result.overall_status == TestResult.Status.ERROR and result.error_message and "没有为该端点找到或执行任何适用的测试用例" in result.error_message): self.total_endpoints_tested +=1 if result.overall_status == TestResult.Status.PASSED: self.endpoints_passed += 1 elif result.overall_status == TestResult.Status.FAILED: self.endpoints_failed += 1 elif result.overall_status == TestResult.Status.PARTIAL_SUCCESS: self.endpoints_partial_success +=1 elif result.overall_status == TestResult.Status.ERROR: self.endpoints_error += 1 elif result.overall_status == TestResult.Status.SKIPPED: # 端点级别跳过 self.endpoints_skipped +=1 for tc_result in result.executed_test_cases: self.total_test_cases_executed += 1 # 每个APITestCase算一次执行 if tc_result.status == ExecutedTestCaseResult.Status.PASSED: self.test_cases_passed += 1 elif tc_result.status == ExecutedTestCaseResult.Status.FAILED: self.test_cases_failed += 1 elif tc_result.status == ExecutedTestCaseResult.Status.ERROR: self.test_cases_error +=1 elif tc_result.status == ExecutedTestCaseResult.Status.SKIPPED: self.test_cases_skipped_in_endpoint +=1 def set_total_endpoints_defined(self, count: int): self.total_endpoints_defined = count def set_total_test_cases_applicable(self, count: int): self.total_test_cases_applicable = count def finalize_summary(self): self.end_time = datetime.datetime.now() @property def duration(self) -> float: if not self.end_time: return 0.0 return (self.end_time - self.start_time).total_seconds() @property def endpoint_success_rate(self) -> float: if self.total_endpoints_tested == 0: return 0.0 # 通常只把 PASSED 算作成功 return (self.endpoints_passed / self.total_endpoints_tested) * 100 @property def test_case_success_rate(self) -> float: if self.total_test_cases_executed == 0: return 0.0 return (self.test_cases_passed / self.total_test_cases_executed) * 100 def to_dict(self) -> Dict[str, Any]: return { "summary_metadata": { "start_time": self.start_time.isoformat(), "end_time": self.end_time.isoformat() if self.end_time else None, "duration_seconds": f"{self.duration:.2f}", }, "endpoint_stats": { "total_defined": self.total_endpoints_defined, "total_tested": self.total_endpoints_tested, "passed": self.endpoints_passed, "failed": self.endpoints_failed, "partial_success": self.endpoints_partial_success, "error": self.endpoints_error, "skipped": self.endpoints_skipped, "success_rate_percentage": f"{self.endpoint_success_rate:.2f}", }, "test_case_stats": { "total_applicable": self.total_test_cases_applicable, # 计划执行的测试用例总数 "total_executed": self.total_test_cases_executed, # 实际执行的测试用例总数 "passed": self.test_cases_passed, "failed": self.test_cases_failed, "error_in_execution": self.test_cases_error, "skipped_during_endpoint_execution": self.test_cases_skipped_in_endpoint, "success_rate_percentage": f"{self.test_case_success_rate:.2f}", }, "detailed_results": [result.to_dict() for result in self.detailed_results] } def to_json(self, pretty=True) -> str: indent = 2 if pretty else None return json.dumps(self.to_dict(), indent=indent, ensure_ascii=False) def print_summary_to_console(self): # Renamed from print_summary # (Implementation can be more detailed based on the new stats) print("\n===== 测试运行摘要 =====") print(f"开始时间: {self.start_time.isoformat()}") if self.end_time: print(f"结束时间: {self.end_time.isoformat()}") print(f"总耗时: {self.duration:.2f} 秒") print("\n--- 端点统计 ---") print(f"定义的端点总数: {self.total_endpoints_defined}") print(f"实际测试的端点数: {self.total_endpoints_tested}") print(f" 通过: {self.endpoints_passed}") print(f" 失败: {self.endpoints_failed}") print(f" 部分成功: {self.endpoints_partial_success}") print(f" 执行错误: {self.endpoints_error}") print(f" 跳过执行: {self.endpoints_skipped}") print(f" 端点通过率: {self.endpoint_success_rate:.2f}%") print("\n--- 测试用例统计 ---") print(f"适用的测试用例总数 (计划执行): {self.total_test_cases_applicable}") print(f"实际执行的测试用例总数: {self.total_test_cases_executed}") print(f" 通过: {self.test_cases_passed}") print(f" 失败: {self.test_cases_failed}") print(f" 执行错误 (测试用例代码问题): {self.test_cases_error}") print(f" 跳过 (在端点内被跳过): {self.test_cases_skipped_in_endpoint}") print(f" 测试用例通过率: {self.test_case_success_rate:.2f}%") # 可选:打印失败的端点和测试用例摘要 failed_endpoints = [res for res in self.detailed_results if res.overall_status == TestResult.Status.FAILED] if failed_endpoints: print("\n--- 失败的端点摘要 ---") for ep_res in failed_endpoints: print(f" 端点: {ep_res.endpoint_id} ({ep_res.endpoint_name}) - 状态: {ep_res.overall_status.value}") for tc_res in ep_res.executed_test_cases: if tc_res.status == ExecutedTestCaseResult.Status.FAILED: print(f" - 测试用例失败: {tc_res.test_case_id} ({tc_res.test_case_name})") for vp in tc_res.validation_points: if not vp.passed: print(f" - 验证点: {vp.message}") class APITestOrchestrator: """API测试编排器""" def __init__(self, base_url: str, custom_test_cases_dir: Optional[str] = None, llm_api_key: Optional[str] = None, llm_base_url: Optional[str] = None, llm_model_name: Optional[str] = None, use_llm_for_request_body: bool = False, use_llm_for_path_params: bool = False, use_llm_for_query_params: bool = False, use_llm_for_headers: bool = False ): """ 初始化API测试编排器 Args: base_url: API基础URL custom_test_cases_dir: 存放自定义 APITestCase 的目录路径。如果为 None,则不加载自定义测试用例。 llm_api_key: 大模型服务的API Key。 llm_base_url: 大模型服务的兼容OpenAI的基础URL。 llm_model_name: 要使用的具体模型名称。 use_llm_for_request_body: 是否全局启用LLM生成请求体。 use_llm_for_path_params: 是否全局启用LLM生成路径参数。 use_llm_for_query_params: 是否全局启用LLM生成查询参数。 use_llm_for_headers: 是否全局启用LLM生成头部参数。 """ self.base_url = base_url.rstrip('/') self.logger = logging.getLogger(__name__) # 初始化组件 self.parser = InputParser() self.api_caller = APICaller() self.validator = JSONSchemaValidator() # JSON Schema 验证器,可能会被测试用例内部使用 self.test_case_registry: Optional[TestCaseRegistry] = None if custom_test_cases_dir: self.logger.info(f"初始化 TestCaseRegistry,扫描目录: {custom_test_cases_dir}") try: self.test_case_registry = TestCaseRegistry(test_cases_dir=custom_test_cases_dir) self.logger.info(f"TestCaseRegistry 初始化完成,发现 {len(self.test_case_registry.get_all_test_case_classes())} 个测试用例类。") except Exception as e: self.logger.error(f"初始化 TestCaseRegistry 失败: {e}", exc_info=True) else: self.logger.info("未提供 custom_test_cases_dir,不加载自定义 APITestCase。") # LLM 全局配置开关 self.use_llm_for_request_body = use_llm_for_request_body self.use_llm_for_path_params = use_llm_for_path_params self.use_llm_for_query_params = use_llm_for_query_params self.use_llm_for_headers = use_llm_for_headers self.llm_service: Optional[LLMService] = None if LLMService is None: self.logger.warning("LLMService 类未能导入,LLM 相关功能将完全禁用。") # 强制所有LLM使用为False,并确保服务实例为None self.use_llm_for_request_body = False self.use_llm_for_path_params = False self.use_llm_for_query_params = False self.use_llm_for_headers = False elif llm_api_key and llm_base_url and llm_model_name: # 直接检查配置是否完整 try: self.llm_service = LLMService( api_key=llm_api_key, base_url=llm_base_url, model_name=llm_model_name ) self.logger.info(f"LLMService 已成功初始化,模型: {llm_model_name}。") except ValueError as ve: self.logger.error(f"LLMService 初始化失败 (参数错误): {ve}。LLM相关功能将不可用。") self.llm_service = None # 确保初始化失败时服务为None except Exception as e: self.logger.error(f"LLMService 初始化时发生未知错误: {e}。LLM相关功能将不可用。", exc_info=True) self.llm_service = None # 确保初始化失败时服务为None else: # 如果LLMService类存在,但配置不完整 if LLMService: self.logger.warning("LLMService 类已找到,但未提供完整的LLM配置 (api_key, base_url, model_name)。LLM相关功能将不可用。") # self.llm_service 默认就是 None,无需额外操作 # 新增:端点级别的LLM生成参数缓存 self.llm_endpoint_params_cache: Dict[str, Dict[str, Any]] = {} def _should_use_llm_for_param_type( self, param_type_key: str, # 例如 "path_params", "query_params", "headers", "body" test_case_instance: Optional[BaseAPITestCase] ) -> bool: """ 判断是否应为特定参数类型尝试使用LLM。 结合全局配置和测试用例特定配置。 """ if not self.llm_service: # 如果LLM服务本身就不可用,则肯定不用 return False global_flag = False tc_specific_flag: Optional[bool] = None if param_type_key == "body": global_flag = self.use_llm_for_request_body if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_body elif param_type_key == "path_params": global_flag = self.use_llm_for_path_params if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_path_params elif param_type_key == "query_params": global_flag = self.use_llm_for_query_params if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_query_params elif param_type_key == "headers": global_flag = self.use_llm_for_headers if test_case_instance: tc_specific_flag = test_case_instance.use_llm_for_headers else: self.logger.warning(f"未知的参数类型键 '{param_type_key}' 在 _should_use_llm_for_param_type 中检查。") return False # 决定最终是否使用LLM的逻辑: # 1. 如果测试用例明确设置了 (tc_specific_flag is not None),则以测试用例的设置为准。 # 2. 否则,使用全局设置。 final_decision = tc_specific_flag if tc_specific_flag is not None else global_flag # self.logger.debug(f"LLM决策 for '{param_type_key}': TC specific='{tc_specific_flag}', Global='{global_flag}', Final='{final_decision}') return final_decision def _create_pydantic_model_from_schema( self, schema: Dict[str, Any], model_name: str, recursion_depth: int = 0 ) -> Optional[Type[BaseModel]]: """ Dynamically creates a Pydantic model from a JSON schema. Handles nested schemas, arrays, and various OpenAPI/JSON Schema constructs. Uses a cache (_dynamic_model_cache) to avoid redefining identical models. """ # This cache key generation might need refinement for very complex/deep schemas # For now, using a combination of model_name and sorted schema keys/values # Important: dicts are unhashable, so we convert to a sorted tuple of items for the cache key. # This is a simplified cache key; a more robust approach might involve serializing the schema. # schema_tuple_for_key = tuple(sorted(schema.items())) if isinstance(schema, dict) else schema # cache_key = (model_name, schema_tuple_for_key, recursion_depth) # Might be too verbose/complex # Simpler cache key based on model_name only if we assume model_name is sufficiently unique # for a given schema structure within a run. If schemas can change for the same model_name, # this needs to be more sophisticated. # If model_name is unique per structure, this is fine. # Let's assume model_name is carefully constructed to be unique for each distinct schema structure # by the calling functions (e.g., _generate_data_from_schema, _build_object_schema_for_params). # Simplified approach: if a model with this exact name was already created, reuse it. # This relies on the caller to ensure `model_name` is unique per schema structure. if model_name in _dynamic_model_cache: self.logger.debug(f"Reusing cached Pydantic model: {model_name}") return _dynamic_model_cache[model_name] if recursion_depth > self.MAX_RECURSION_DEPTH_PYDANTIC: self.logger.error(f"创建Pydantic模型 '{model_name}' 时达到最大递归深度 {self.MAX_RECURSION_DEPTH_PYDANTIC}。可能存在循环引用。") return None # 清理模型名称,使其成为有效的Python标识符 safe_model_name = "".join(c if c.isalnum() or c == '_' else '_' for c in model_name) if not safe_model_name or not safe_model_name[0].isalpha() and safe_model_name[0] != '_': safe_model_name = f"DynamicModel_{safe_model_name}" # 检查缓存 (使用清理后的名称) if safe_model_name in _dynamic_model_cache: self.logger.debug(f"从缓存返回动态模型: {safe_model_name}") return _dynamic_model_cache[safe_model_name] self.logger.debug(f"开始从Schema创建Pydantic模型: '{safe_model_name}' (原始名: '{model_name}', 深度: {recursion_depth})") if not isinstance(schema, dict) or schema.get('type') != 'object': # Safely get type for logging if schema is not a dict or does not have 'type' schema_type_for_log = schema.get('type') if isinstance(schema, dict) else type(schema).__name__ self.logger.error(f"提供的Schema用于模型 '{safe_model_name}' 的必须是 type 'object' 且是一个字典, 实际: {schema_type_for_log}") return None properties = schema.get('properties', {}) required_fields = set(schema.get('required', [])) field_definitions: Dict[str, Tuple[Any, Any]] = {} for prop_name, prop_schema in properties.items(): if not isinstance(prop_schema, dict): self.logger.warning(f"属性 '{prop_name}' 在模型 '{safe_model_name}' 中的Schema无效,已跳过。") continue python_type: Any = Any field_args: Dict[str, Any] = {} default_value: Any = ... # Ellipsis for required fields with no default if 'default' in prop_schema: default_value = prop_schema['default'] elif prop_name not in required_fields: default_value = None if 'description' in prop_schema: field_args['description'] = prop_schema['description'] json_type = prop_schema.get('type') json_format = prop_schema.get('format') if json_type == 'object': nested_model_name_base = f"{safe_model_name}_{prop_name}" python_type = self._create_pydantic_model_from_schema(prop_schema, nested_model_name_base, recursion_depth + 1) if python_type is None: self.logger.warning(f"无法为 '{safe_model_name}' 中的嵌套属性 '{prop_name}' 创建模型,已跳过。") continue elif json_type == 'array': items_schema = prop_schema.get('items') if not isinstance(items_schema, dict): self.logger.warning(f"数组属性 '{prop_name}' 在模型 '{safe_model_name}' 中的 'items' schema无效,已跳过。") continue item_type: Any = Any item_json_type = items_schema.get('type') item_json_format = items_schema.get('format') if item_json_type == 'object': item_model_name_base = f"{safe_model_name}_{prop_name}_Item" item_type = self._create_pydantic_model_from_schema(items_schema, item_model_name_base, recursion_depth + 1) if item_type is None: self.logger.warning(f"无法为 '{safe_model_name}' 中的数组属性 '{prop_name}' 的项创建模型,已跳过。") continue elif item_json_type == 'string': if item_json_format == 'date-time': item_type = dt.datetime elif item_json_format == 'date': item_type = dt.date elif item_json_format == 'email': item_type = EmailStr elif item_json_format == 'uuid': item_type = UUID else: item_type = str elif item_json_type == 'integer': item_type = int elif item_json_type == 'number': item_type = float elif item_json_type == 'boolean': item_type = bool else: self.logger.warning(f"数组 '{prop_name}' 中的项具有未知类型 '{item_json_type}',默认为 Any。") python_type = List[item_type] # type: ignore elif json_type == 'string': if json_format == 'date-time': python_type = dt.datetime elif json_format == 'date': python_type = dt.date elif json_format == 'email': python_type = EmailStr elif json_format == 'uuid': python_type = UUID else: python_type = str if 'minLength' in prop_schema: field_args['min_length'] = prop_schema['minLength'] if 'maxLength' in prop_schema: field_args['max_length'] = prop_schema['maxLength'] if 'pattern' in prop_schema: field_args['pattern'] = prop_schema['pattern'] elif json_type == 'integer': python_type = int if 'minimum' in prop_schema: field_args['ge'] = prop_schema['minimum'] if 'maximum' in prop_schema: field_args['le'] = prop_schema['maximum'] elif json_type == 'number': python_type = float if 'minimum' in prop_schema: field_args['ge'] = prop_schema['minimum'] if 'maximum' in prop_schema: field_args['le'] = prop_schema['maximum'] elif json_type == 'boolean': python_type = bool elif json_type is None and '$ref' in prop_schema: self.logger.warning(f"Schema $ref '{prop_schema['$ref']}' in '{safe_model_name}.{prop_name}' not yet supported. Defaulting to Any.") python_type = Any else: self.logger.warning(f"属性 '{prop_name}' 在模型 '{safe_model_name}' 中具有未知类型 '{json_type}',默认为 Any。") python_type = Any if 'enum' in prop_schema: enum_values = prop_schema['enum'] if enum_values: enum_desc = f" (Enum values: {', '.join(map(str, enum_values))})" field_args['description'] = field_args.get('description', '') + enum_desc current_field_is_optional = prop_name not in required_fields if current_field_is_optional and python_type is not Any and default_value is None: # For Pydantic v1/v2, if a field is not required and has no other default, it's Optional. # The `python_type` itself might already be an `Optional` if it came from a nested optional model. # We only wrap with Optional if it's not already wrapped effectively. # A simple check: if the type name doesn't start with "Optional" if not (hasattr(python_type, '__origin__') and python_type.__origin__ is Union and type(None) in python_type.__args__): python_type = Optional[python_type] field_definitions[prop_name] = (python_type, Field(default_value, **field_args)) if not field_definitions: self.logger.warning(f"模型 '{safe_model_name}' 没有有效的字段定义,无法创建。") # Return a very basic BaseModel if no properties are defined but an object schema was given # This might happen for an empty object schema {} try: EmptyModel = create_model(safe_model_name, __base__=BaseModel) _dynamic_model_cache[safe_model_name] = EmptyModel self.logger.info(f"创建了一个空的动态Pydantic模型: '{safe_model_name}' (由于无属性定义)") return EmptyModel except Exception as e_empty: self.logger.error(f"尝试为 '{safe_model_name}' 创建空模型时失败: {e_empty}", exc_info=True) return None try: # ForwardRef for self-referencing models is complex; not fully handled here yet. # If a type in field_definitions is a string (e.g., a ForwardRef string), create_model handles it. DynamicModel = create_model(safe_model_name, **field_definitions, __base__=BaseModel) # type: ignore _dynamic_model_cache[safe_model_name] = DynamicModel self.logger.info(f"成功创建/缓存了动态Pydantic模型: '{safe_model_name}'") # Attempt to update forward refs if any were string types that are now defined # This is a simplified approach. Pydantic's update_forward_refs is usually called on the module or specific model. # For dynamically created models, this might need careful handling if true circular deps are common. # For now, we assume nested creation order mostly handles dependencies. # if hasattr(DynamicModel, 'update_forward_refs'): # try: # DynamicModel.update_forward_refs(**_dynamic_model_cache) # self.logger.debug(f"Attempted to update forward refs for {safe_model_name}") # except Exception as e_fwd: # self.logger.warning(f"Error updating forward_refs for {safe_model_name}: {e_fwd}") return DynamicModel except Exception as e: self.logger.error(f"使用Pydantic create_model创建 '{safe_model_name}' 时失败: {e}", exc_info=True) return None def _execute_single_test_case( self, test_case_class: Type[BaseAPITestCase], endpoint_spec: Union[YAPIEndpoint, SwaggerEndpoint], # 当前端点的规格 global_api_spec: Union[ParsedYAPISpec, ParsedSwaggerSpec] # 整个API的规格 ) -> ExecutedTestCaseResult: """ 执行单个测试用例。 流程: 1. 准备请求数据 (路径参数, 查询参数, 请求头, 请求体)。 - 首先尝试从测试用例的 generate_xxx 方法获取。 - 如果测试用例未覆盖或返回None,则尝试从API spec生成默认数据。 - 如果开启了LLM,并且测试用例允许,则使用LLM生成。 2. (如果适用) 调用测试用例的 modify_request_url 钩子。 3. (如果适用) 调用测试用例的 validate_request_url, validate_request_headers, validate_request_body 钩子。 4. 发送API请求。 5. 记录响应。 6. 调用测试用例的 validate_response 和 check_performance 钩子。 7. 汇总验证结果,确定测试用例状态。 """ start_time = time.monotonic() validation_results: List[ValidationResult] = [] overall_status: ExecutedTestCaseResult.Status execution_message = "" test_case_instance: Optional[BaseAPITestCase] = None # Initialize to None # 将 endpoint_spec 转换为字典,如果它还不是的话 endpoint_spec_dict: Dict[str, Any] if isinstance(endpoint_spec, dict): endpoint_spec_dict = endpoint_spec # self.logger.debug(f"endpoint_spec 已经是字典类型。") elif hasattr(endpoint_spec, 'to_dict') and callable(endpoint_spec.to_dict): try: endpoint_spec_dict = endpoint_spec.to_dict() # self.logger.debug(f"成功通过 to_dict() 方法将类型为 {type(endpoint_spec)} 的 endpoint_spec 转换为字典。") if not endpoint_spec_dict: # 如果 to_dict() 返回空字典 # self.logger.warning(f"endpoint_spec.to_dict() (类型: {type(endpoint_spec)}) 返回了一个空字典。") # 尝试备用转换 if isinstance(endpoint_spec, (YAPIEndpoint, SwaggerEndpoint)): # self.logger.debug(f"尝试从 {type(endpoint_spec).__name__} 对象的属性手动构建 endpoint_spec_dict。") endpoint_spec_dict = { "method": getattr(endpoint_spec, 'method', 'UNKNOWN_METHOD').upper(), "path": getattr(endpoint_spec, 'path', 'UNKNOWN_PATH'), "title": getattr(endpoint_spec, 'title', getattr(endpoint_spec, 'summary', '')), "summary": getattr(endpoint_spec, 'summary', ''), "description": getattr(endpoint_spec, 'description', ''), "operationId": getattr(endpoint_spec, 'operation_id', f"{getattr(endpoint_spec, 'method', '').upper()}_{getattr(endpoint_spec, 'path', '').replace('/', '_')}"), "parameters": getattr(endpoint_spec, 'parameters', []) if hasattr(endpoint_spec, 'parameters') else (getattr(endpoint_spec, 'req_query', []) + getattr(endpoint_spec, 'req_headers', [])), "requestBody": getattr(endpoint_spec, 'request_body', None) if hasattr(endpoint_spec, 'request_body') else getattr(endpoint_spec, 'req_body_other', None), "_original_object_type": type(endpoint_spec).__name__ } if not any(endpoint_spec_dict.values()): # 如果手动构建后仍基本为空 # self.logger.error(f"手动从属性构建 endpoint_spec_dict (类型: {type(endpoint_spec)}) 后仍然为空或无效。") endpoint_spec_dict = {} # 重置为空,触发下方错误处理 except Exception as e: self.logger.error(f"调用 endpoint_spec (类型: {type(endpoint_spec)}) 的 to_dict() 方法时出错: {e}。尝试备用转换。") if isinstance(endpoint_spec, (YAPIEndpoint, SwaggerEndpoint)): self.logger.debug(f"尝试从 {type(endpoint_spec).__name__} 对象的属性手动构建 endpoint_spec_dict。") endpoint_spec_dict = { "method": getattr(endpoint_spec, 'method', 'UNKNOWN_METHOD').upper(), "path": getattr(endpoint_spec, 'path', 'UNKNOWN_PATH'), "title": getattr(endpoint_spec, 'title', getattr(endpoint_spec, 'summary', '')), "summary": getattr(endpoint_spec, 'summary', ''), "description": getattr(endpoint_spec, 'description', ''), "operationId": getattr(endpoint_spec, 'operation_id', f"{getattr(endpoint_spec, 'method', '').upper()}_{getattr(endpoint_spec, 'path', '').replace('/', '_')}"), "parameters": getattr(endpoint_spec, 'parameters', []) if hasattr(endpoint_spec, 'parameters') else (getattr(endpoint_spec, 'req_query', []) + getattr(endpoint_spec, 'req_headers', [])), "requestBody": getattr(endpoint_spec, 'request_body', None) if hasattr(endpoint_spec, 'request_body') else getattr(endpoint_spec, 'req_body_other', None), "_original_object_type": type(endpoint_spec).__name__ } if not any(endpoint_spec_dict.values()): # 如果手动构建后仍基本为空 self.logger.error(f"手动从属性构建 endpoint_spec_dict (类型: {type(endpoint_spec)}) 后仍然为空或无效。") endpoint_spec_dict = {} # 重置为空,触发下方错误处理 else: endpoint_spec_dict = {} # 转换失败 elif hasattr(endpoint_spec, 'data') and isinstance(getattr(endpoint_spec, 'data'), dict): # 兼容 YAPIEndpoint 结构 endpoint_spec_dict = getattr(endpoint_spec, 'data') # self.logger.debug(f"使用了类型为 {type(endpoint_spec)} 的 endpoint_spec 的 .data 属性。") else: # 如果没有 to_dict, 也不是已知可直接访问 .data 的类型,则尝试最后的通用转换或手动构建 if isinstance(endpoint_spec, (YAPIEndpoint, SwaggerEndpoint)): # self.logger.debug(f"类型为 {type(endpoint_spec).__name__} 的 endpoint_spec 没有 to_dict() 或 data,尝试从属性手动构建。") endpoint_spec_dict = { "method": getattr(endpoint_spec, 'method', 'UNKNOWN_METHOD').upper(), "path": getattr(endpoint_spec, 'path', 'UNKNOWN_PATH'), "title": getattr(endpoint_spec, 'title', getattr(endpoint_spec, 'summary', '')), "summary": getattr(endpoint_spec, 'summary', ''), "description": getattr(endpoint_spec, 'description', ''), "operationId": getattr(endpoint_spec, 'operation_id', f"{getattr(endpoint_spec, 'method', '').upper()}_{getattr(endpoint_spec, 'path', '').replace('/', '_')}"), "parameters": getattr(endpoint_spec, 'parameters', []) if hasattr(endpoint_spec, 'parameters') else (getattr(endpoint_spec, 'req_query', []) + getattr(endpoint_spec, 'req_headers', [])), "requestBody": getattr(endpoint_spec, 'request_body', None) if hasattr(endpoint_spec, 'request_body') else getattr(endpoint_spec, 'req_body_other', None), "_original_object_type": type(endpoint_spec).__name__ } if not any(endpoint_spec_dict.values()): # 如果手动构建后仍基本为空 self.logger.error(f"手动从属性构建 endpoint_spec_dict (类型: {type(endpoint_spec)}) 后仍然为空或无效。") endpoint_spec_dict = {} # 重置为空,触发下方错误处理 else: try: endpoint_spec_dict = dict(endpoint_spec) self.logger.warning(f"直接将类型为 {type(endpoint_spec)} 的 endpoint_spec 转换为字典。这可能是一个浅拷贝,并且可能不完整。") except TypeError: self.logger.error(f"无法将 endpoint_spec (类型: {type(endpoint_spec)}) 转换为字典,也未找到有效的转换方法。") endpoint_spec_dict = {} if not endpoint_spec_dict or not endpoint_spec_dict.get("path") or endpoint_spec_dict.get("path") == 'UNKNOWN_PATH': # 如果转换后仍为空或无效 self.logger.error(f"Endpoint spec (原始类型: {type(endpoint_spec)}) 无法有效转换为包含有效路径的字典,测试用例执行可能受影响。最终 endpoint_spec_dict: {endpoint_spec_dict}") # 创建一个最小的 endpoint_spec_dict 以允许测试用例实例化,但它将缺少大部分信息 endpoint_spec_dict = { 'method': endpoint_spec_dict.get('method', 'UNKNOWN_METHOD'), # 保留已解析的方法 'path': 'UNKNOWN_PATH_CONVERSION_FAILED', 'title': f"Unknown endpoint due to spec conversion error for original type {type(endpoint_spec)}", 'parameters': [], # 确保有空的 parameters 和 requestBody 'requestBody': None } # 确保 global_api_spec (应该是 ParsedSwaggerSpec 或 ParsedYAPISpec 实例) 被转换为字典 global_spec_dict: Dict[str, Any] = {} converted_by_method: Optional[str] = None if hasattr(global_api_spec, 'spec') and isinstance(getattr(global_api_spec, 'spec', None), dict) and getattr(global_api_spec, 'spec', None): global_spec_dict = global_api_spec.spec # type: ignore converted_by_method = ".spec attribute" elif is_dataclass(global_api_spec) and not isinstance(global_api_spec, type): # Ensure it's an instance, not the class itself try: candidate_spec = dataclass_asdict(global_api_spec) if isinstance(candidate_spec, dict) and candidate_spec: global_spec_dict = candidate_spec converted_by_method = "dataclasses.asdict()" except Exception as e: self.logger.debug(f"Calling dataclasses.asdict() on {type(global_api_spec)} failed: {e}, trying other methods.") if not global_spec_dict and hasattr(global_api_spec, 'model_dump') and callable(global_api_spec.model_dump): try: candidate_spec = global_api_spec.model_dump() if isinstance(candidate_spec, dict) and candidate_spec: global_spec_dict = candidate_spec converted_by_method = ".model_dump()" except Exception as e: self.logger.debug(f"Calling .model_dump() on {type(global_api_spec)} failed: {e}, trying other methods.") if not global_spec_dict and hasattr(global_api_spec, 'dict') and callable(global_api_spec.dict): try: candidate_spec = global_api_spec.dict() if isinstance(candidate_spec, dict) and candidate_spec: global_spec_dict = candidate_spec converted_by_method = ".dict()" except Exception as e: self.logger.debug(f"Calling .dict() on {type(global_api_spec)} failed: {e}, trying other methods.") if not global_spec_dict and hasattr(global_api_spec, 'to_dict') and callable(global_api_spec.to_dict): try: candidate_spec = global_api_spec.to_dict() if isinstance(candidate_spec, dict) and candidate_spec: global_spec_dict = candidate_spec converted_by_method = ".to_dict()" except Exception as e: self.logger.debug(f"Calling .to_dict() on {type(global_api_spec)} failed: {e}, trying other methods.") if not global_spec_dict and isinstance(global_api_spec, dict) and global_api_spec: global_spec_dict = global_api_spec converted_by_method = "direct dict" self.logger.warning(f"global_api_spec was already a dictionary. This might be unexpected if an object was anticipated.") if global_spec_dict and converted_by_method: self.logger.debug(f"Successfully converted/retrieved global_api_spec (type: {type(global_api_spec)}) to dict using {converted_by_method}.") elif not global_spec_dict : self.logger.error( f"Failed to convert global_api_spec (type: {type(global_api_spec)}) to a non-empty dictionary using .spec, dataclasses.asdict(), .model_dump(), .dict(), or .to_dict(). " f"It's also not a non-empty dictionary itself. JSON reference resolution will be severely limited or fail. Using empty global_spec_dict." ) global_spec_dict = {} # --- BEGIN $ref RESOLUTION --- if global_spec_dict: # Only attempt resolution if we have the full spec for lookups self.logger.debug(f"global_spec_dict keys for $ref resolution: {list(global_spec_dict.keys())}") # <--- 添加的日志行 self.logger.debug(f"开始为 endpoint_spec_dict (来自 {type(endpoint_spec)}) 中的 schemas 进行 $ref 解析...") # 1. 解析 requestBody schema if 'requestBody' in endpoint_spec_dict and isinstance(endpoint_spec_dict['requestBody'], dict): if 'content' in endpoint_spec_dict['requestBody'] and isinstance(endpoint_spec_dict['requestBody']['content'], dict): for media_type, media_type_obj in endpoint_spec_dict['requestBody']['content'].items(): if isinstance(media_type_obj, dict) and 'schema' in media_type_obj: self.logger.debug(f"正在解析 requestBody content '{media_type}' 的 schema...") original_schema = media_type_obj['schema'] media_type_obj['schema'] = schema_utils.resolve_json_schema_references(original_schema, global_spec_dict) # self.logger.debug(f"解析后的 requestBody content '{media_type}' schema: {json.dumps(media_type_obj['schema'], indent=2)}") # 2. 解析 parameters schemas (OpenAPI 2.0 'in: body' parameter or OpenAPI 3.0 parameters) if 'parameters' in endpoint_spec_dict and isinstance(endpoint_spec_dict['parameters'], list): for i, param in enumerate(endpoint_spec_dict['parameters']): if isinstance(param, dict) and 'schema' in param: self.logger.debug(f"正在解析 parameters[{i}] ('{param.get('name', 'N/A')}') 的 schema...") original_param_schema = param['schema'] param['schema'] = schema_utils.resolve_json_schema_references(original_param_schema, global_spec_dict) # self.logger.debug(f"解析后的 parameters[{i}] schema: {json.dumps(param['schema'], indent=2)}") # 3. 解析 responses schemas if 'responses' in endpoint_spec_dict and isinstance(endpoint_spec_dict['responses'], dict): for status_code, response_obj in endpoint_spec_dict['responses'].items(): if isinstance(response_obj, dict) and 'content' in response_obj and isinstance(response_obj['content'], dict): for media_type, media_type_obj in response_obj['content'].items(): if isinstance(media_type_obj, dict) and 'schema' in media_type_obj: self.logger.debug(f"正在解析 responses '{status_code}' content '{media_type}' 的 schema...") original_resp_schema = media_type_obj['schema'] media_type_obj['schema'] = schema_utils.resolve_json_schema_references(original_resp_schema, global_spec_dict) # self.logger.debug(f"解析后的 response '{status_code}' content '{media_type}' schema: {json.dumps(media_type_obj['schema'], indent=2)}") # OpenAPI 2.0 response schema directly under response object elif isinstance(response_obj, dict) and 'schema' in response_obj: self.logger.debug(f"正在解析 responses '{status_code}' 的 schema (OpenAPI 2.0 style)...") original_resp_schema = response_obj['schema'] response_obj['schema'] = schema_utils.resolve_json_schema_references(original_resp_schema, global_spec_dict) self.logger.info(f"Endpoint spec (来自 {type(endpoint_spec)}) 中的 schemas $ref 解析完成。") else: self.logger.warning(f"global_spec_dict 为空,跳过 endpoint_spec_dict (来自 {type(endpoint_spec)}) 的 $ref 解析。") # --- END $ref RESOLUTION --- # 将 global_spec_dict 注入到 endpoint_spec_dict 中,供可能的内部解析使用 (如果 to_dict 未包含它) if '_global_api_spec_for_resolution' not in endpoint_spec_dict and global_spec_dict: endpoint_spec_dict['_global_api_spec_for_resolution'] = global_spec_dict try: self.logger.debug(f"准备实例化测试用例类: {test_case_class.__name__} 使用 endpoint_spec (keys: {list(endpoint_spec_dict.keys()) if endpoint_spec_dict else 'None'}) 和 global_api_spec (keys: {list(global_spec_dict.keys()) if global_spec_dict else 'None'})") test_case_instance = test_case_class( endpoint_spec=endpoint_spec_dict, global_api_spec=global_spec_dict, json_schema_validator=self.validator, llm_service=self.llm_service # Pass the orchestrator's LLM service instance ) self.logger.info(f"开始执行测试用例 '{test_case_instance.id}' ({test_case_instance.name}) for endpoint '{endpoint_spec_dict.get('method', 'N/A')} {endpoint_spec_dict.get('path', 'N/A')}'") # 调用 _prepare_initial_request_data 时传递 test_case_instance # 并直接解包返回的元组 request_context_data = self._prepare_initial_request_data(endpoint_spec_dict, test_case_instance=test_case_instance) # 从 request_context_data 对象中获取各个部分 method = request_context_data.method path_params_data = request_context_data.path_params query_params_data = request_context_data.query_params headers_data = request_context_data.headers body_data = request_context_data.body # 让测试用例有机会修改这些生成的数据 # 注意: BaseAPITestCase 中的 generate_* 方法现在需要传入 endpoint_spec_dict # 因为它们可能需要原始的端点定义来进行更复杂的逻辑 current_q_params = test_case_instance.generate_query_params(query_params_data) current_headers = test_case_instance.generate_headers(headers_data) current_body = test_case_instance.generate_request_body(body_data) # 路径参数通常由编排器根据路径模板和数据最终确定,但如果测试用例要覆盖,可以提供 generate_path_params # 这里我们使用从 _prepare_initial_request_data 返回的 path_params_data 作为基础 current_path_params = test_case_instance.generate_path_params(path_params_data) if hasattr(test_case_instance, 'generate_path_params') and callable(getattr(test_case_instance, 'generate_path_params')) and getattr(test_case_instance, 'generate_path_params').__func__ != BaseAPITestCase.generate_path_params else path_params_data final_url_template = endpoint_spec_dict.get('path', '') # 添加日志:打印将要用于替换的路径参数 self.logger.debug(f"Path parameters to be substituted: {current_path_params}") final_url = self.base_url + final_url_template for p_name, p_val in current_path_params.items(): placeholder = f"{{{p_name}}}" if placeholder in final_url_template: # 检查原始模板中是否存在占位符 final_url = final_url.replace(placeholder, str(p_val)) # 添加日志:打印替换后的URL (在测试用例修改之前) self.logger.debug(f"URL after path parameter substitution (before TC modify_request_url hook): {final_url}") # ---- 调用测试用例的 URL 修改钩子 ---- effective_url = final_url # 默认使用原始构建的URL if hasattr(test_case_instance, 'modify_request_url') and callable(getattr(test_case_instance, 'modify_request_url')): try: modified_url_by_tc = test_case_instance.modify_request_url(final_url) if modified_url_by_tc != final_url: test_case_instance.logger.info(f"Test case '{test_case_instance.id}' modified URL from '{final_url}' to '{modified_url_by_tc}'") effective_url = modified_url_by_tc # 使用测试用例修改后的URL else: test_case_instance.logger.debug(f"Test case '{test_case_instance.id}' did not modify the URL via modify_request_url hook.") except Exception as e_url_mod: test_case_instance.logger.error(f"Error in test case '{test_case_instance.id}' during modify_request_url: {e_url_mod}. Using original URL '{final_url}'.", exc_info=True) # effective_url 保持为 final_url else: test_case_instance.logger.debug(f"Test case '{test_case_instance.id}' does not have a callable modify_request_url method. Using original URL.") # ---- 结束 URL 修改钩子调用 ---- api_request_context = APIRequestContext( method=method, # 使用从 _prepare_initial_request_data 获取的 method url=effective_url, # <--- 使用 effective_url path_params=current_path_params, query_params=current_q_params, headers=current_headers, body=current_body, endpoint_spec=endpoint_spec_dict ) validation_results.extend(test_case_instance.validate_request_url(api_request_context.url, api_request_context)) validation_results.extend(test_case_instance.validate_request_headers(api_request_context.headers, api_request_context)) validation_results.extend(test_case_instance.validate_request_body(api_request_context.body, api_request_context)) critical_pre_validation_failure = False failure_messages = [] for vp in validation_results: if not vp.passed and test_case_instance.severity in [TestSeverity.CRITICAL, TestSeverity.HIGH]: # Check severity of the Test Case for pre-validation critical_pre_validation_failure = True failure_messages.append(vp.message) if critical_pre_validation_failure: self.logger.warning(f"测试用例 '{test_case_instance.id}' 因请求预校验失败而中止 (TC严重级别: {test_case_instance.severity.value})。失败信息: {'; '.join(failure_messages)}") tc_duration = time.monotonic() - start_time return ExecutedTestCaseResult( test_case_id=test_case_instance.id, test_case_name=test_case_instance.name, test_case_severity=test_case_instance.severity, status=ExecutedTestCaseResult.Status.FAILED, validation_points=validation_results, message=f"请求预校验失败: {'; '.join(failure_messages)}", duration=tc_duration ) api_request_obj = APIRequest( method=api_request_context.method, url=api_request_context.url, params=api_request_context.query_params, headers=api_request_context.headers, json_data=api_request_context.body ) response_call_start_time = time.time() api_response_obj = self.api_caller.call_api(api_request_obj) response_call_elapsed_time = time.time() - response_call_start_time actual_text_content: Optional[str] = None if hasattr(api_response_obj, 'text_content') and api_response_obj.text_content is not None: actual_text_content = api_response_obj.text_content elif api_response_obj.json_content is not None: if isinstance(api_response_obj.json_content, str): # Should not happen if json_content is parsed actual_text_content = api_response_obj.json_content else: try: actual_text_content = json.dumps(api_response_obj.json_content, ensure_ascii=False) except TypeError: # If json_content is not serializable (e.g. bytes) actual_text_content = str(api_response_obj.json_content) api_response_context = APIResponseContext( status_code=api_response_obj.status_code, headers=api_response_obj.headers, json_content=api_response_obj.json_content, text_content=actual_text_content, elapsed_time=response_call_elapsed_time, original_response= getattr(api_response_obj, 'raw_response', None), # Pass raw if available request_context=api_request_context ) validation_results.extend(test_case_instance.validate_response(api_response_context, api_request_context)) validation_results.extend(test_case_instance.check_performance(api_response_context, api_request_context)) final_status = ExecutedTestCaseResult.Status.PASSED if any(not vp.passed for vp in validation_results): final_status = ExecutedTestCaseResult.Status.FAILED tc_duration = time.monotonic() - start_time return ExecutedTestCaseResult( test_case_id=test_case_instance.id, test_case_name=test_case_instance.name, test_case_severity=test_case_instance.severity, status=final_status, validation_points=validation_results, duration=tc_duration ) except Exception as e: self.logger.error(f"执行测试用例 '{test_case_class.id if hasattr(test_case_class, 'id') else test_case_class.__name__}' (在实例化阶段或之前) 时发生严重错误: {e}", exc_info=True) # 如果 test_case_instance 在实例化时失败,它将是 None tc_id_for_log = test_case_instance.id if test_case_instance else (test_case_class.id if hasattr(test_case_class, 'id') else "unknown_tc_id_instantiation_error") tc_name_for_log = test_case_instance.name if test_case_instance else (test_case_class.name if hasattr(test_case_class, 'name') else test_case_class.__name__) # 实例化失败,严重性默认为CRITICAL tc_severity_for_log = test_case_instance.severity if test_case_instance else TestSeverity.CRITICAL tc_duration = time.monotonic() - start_time # validation_results 可能在此阶段为空,或包含来自先前步骤的条目(如果错误发生在实例化之后) return ExecutedTestCaseResult( test_case_id=tc_id_for_log, test_case_name=tc_name_for_log, test_case_severity=tc_severity_for_log, status=ExecutedTestCaseResult.Status.ERROR, validation_points=validation_results, # Ensure validation_results is defined (it is, at the start of the function) message=f"测试用例执行时发生内部错误 (可能在实例化期间): {str(e)}", duration=tc_duration ) def _prepare_initial_request_data( self, endpoint_spec: Dict[str, Any], # 已经转换为字典 test_case_instance: Optional[BaseAPITestCase] = None # 传入测试用例实例以便访问其LLM配置 ) -> APIRequestContext: # 返回 APIRequestContext 对象 """ 根据API端点规范,准备初始的请求数据,包括URL(模板)、路径参数、查询参数、头部和请求体。 这些数据将作为测试用例中 generate_* 方法的输入。 """ method = endpoint_spec.get("method", "GET").upper() path_template = endpoint_spec.get("path", "/") operation_id = endpoint_spec.get("operationId", path_template) # 使用 path 作为 operationId 的 fallback initial_path_params: Dict[str, Any] = {} initial_query_params: Dict[str, Any] = {} initial_headers: Dict[str, str] = {} initial_body: Optional[Any] = None parameters = endpoint_spec.get('parameters', []) # 1. 处理路径参数 path_param_specs = [p for p in parameters if p.get('in') == 'path'] for param_spec in path_param_specs: name = param_spec.get('name') if not name: continue should_use_llm = self._should_use_llm_for_param_type("path_params", test_case_instance) if should_use_llm and self.llm_service: self.logger.info(f"Attempting LLM generation for path parameter '{name}' in '{operation_id}'") # generated_value = self.llm_service.generate_data_for_parameter(param_spec, endpoint_spec, "path") # initial_path_params[name] = generated_value if generated_value is not None else f"llm_placeholder_for_{name}" initial_path_params[name] = f"llm_path_{name}" # Placeholder else: if 'example' in param_spec: initial_path_params[name] = param_spec['example'] elif param_spec.get('schema') and 'example' in param_spec['schema']: initial_path_params[name] = param_spec['schema']['example'] # OpenAPI 3.0 `parameter.schema.example` elif 'default' in param_spec.get('schema', {}): initial_path_params[name] = param_spec['schema']['default'] elif 'default' in param_spec: # OpenAPI 2.0 `parameter.default` initial_path_params[name] = param_spec['default'] else: schema = param_spec.get('schema', {}) param_type = schema.get('type', 'string') if param_type == 'integer': initial_path_params[name] = 123 elif param_type == 'number': initial_path_params[name] = 1.23 elif param_type == 'boolean': initial_path_params[name] = True elif param_type == 'string' and schema.get('format') == 'uuid': initial_path_params[name] = str(UUID(int=0)) # Example UUID elif param_type == 'string' and schema.get('format') == 'date': initial_path_params[name] = dt.date.today().isoformat() elif param_type == 'string' and schema.get('format') == 'date-time': initial_path_params[name] = dt.datetime.now().isoformat() else: initial_path_params[name] = f"param_{name}" self.logger.debug(f"Initial path param for '{operation_id}': {name} = {initial_path_params.get(name)}") # 2. 处理查询参数 query_param_specs = [p for p in parameters if p.get('in') == 'query'] for param_spec in query_param_specs: name = param_spec.get('name') if not name: continue should_use_llm = self._should_use_llm_for_param_type("query_params", test_case_instance) if should_use_llm and self.llm_service: self.logger.info(f"Attempting LLM generation for query parameter '{name}' in '{operation_id}'") initial_query_params[name] = f"llm_query_{name}" # Placeholder else: if 'example' in param_spec: initial_query_params[name] = param_spec['example'] elif param_spec.get('schema') and 'example' in param_spec['schema']: initial_query_params[name] = param_spec['schema']['example'] elif 'default' in param_spec.get('schema', {}): initial_query_params[name] = param_spec['schema']['default'] elif 'default' in param_spec: initial_query_params[name] = param_spec['default'] else: initial_query_params[name] = f"query_val_{name}" # Simplified default self.logger.debug(f"Initial query param for '{operation_id}': {name} = {initial_query_params.get(name)}") # 3. 处理请求头参数 (包括规范定义的和标准的 Content-Type/Accept) header_param_specs = [p for p in parameters if p.get('in') == 'header'] for param_spec in header_param_specs: name = param_spec.get('name') if not name: continue # 标准头 Content-Type 和 Accept 会在后面专门处理 if name.lower() in ['content-type', 'accept', 'authorization']: self.logger.debug(f"Skipping standard header '{name}' in parameter processing for '{operation_id}'. It will be handled separately.") continue should_use_llm = self._should_use_llm_for_param_type("headers", test_case_instance) if should_use_llm and self.llm_service: self.logger.info(f"Attempting LLM generation for header '{name}' in '{operation_id}'") initial_headers[name] = f"llm_header_{name}" # Placeholder else: if 'example' in param_spec: initial_headers[name] = str(param_spec['example']) elif param_spec.get('schema') and 'example' in param_spec['schema']: initial_headers[name] = str(param_spec['schema']['example']) elif 'default' in param_spec.get('schema', {}): initial_headers[name] = str(param_spec['schema']['default']) elif 'default' in param_spec: initial_headers[name] = str(param_spec['default']) else: initial_headers[name] = f"header_val_{name}" self.logger.debug(f"Initial custom header param for '{operation_id}': {name} = {initial_headers.get(name)}") # 3.1 设置 Content-Type # 优先从 requestBody.content 获取 (OpenAPI 3.x) request_body_spec_candidate = endpoint_spec.get('requestBody') request_body_spec = request_body_spec_candidate if isinstance(request_body_spec_candidate, dict) else {} if 'content' in request_body_spec: content_types = list(request_body_spec['content'].keys()) if content_types: # 优先选择 application/json 如果存在 initial_headers['Content-Type'] = next((ct for ct in content_types if 'json' in ct.lower()), content_types[0]) elif 'consumes' in endpoint_spec: # 然后是 consumes (OpenAPI 2.0) consumes = endpoint_spec['consumes'] if consumes: initial_headers['Content-Type'] = next((c for c in consumes if 'json' in c.lower()), consumes[0]) elif method in ['POST', 'PUT', 'PATCH'] and not initial_headers.get('Content-Type'): initial_headers['Content-Type'] = 'application/json' # 默认对于这些方法 self.logger.debug(f"Initial Content-Type for '{operation_id}': {initial_headers.get('Content-Type')}") # 3.2 设置 Accept # 优先从 responses..content 获取 (OpenAPI 3.x) responses_spec = endpoint_spec.get('responses', {}) accept_header_set = False for code, response_def in responses_spec.items(): if 'content' in response_def: accept_types = list(response_def['content'].keys()) if accept_types: initial_headers['Accept'] = next((at for at in accept_types if 'json' in at.lower() or '*/*' in at), accept_types[0]) accept_header_set = True break if not accept_header_set and 'produces' in endpoint_spec: # 然后是 produces (OpenAPI 2.0) produces = endpoint_spec['produces'] if produces: initial_headers['Accept'] = next((p for p in produces if 'json' in p.lower() or '*/*' in p), produces[0]) accept_header_set = True if not accept_header_set and not initial_headers.get('Accept'): initial_headers['Accept'] = 'application/json, */*' # 更通用的默认值 self.logger.debug(f"Initial Accept header for '{operation_id}': {initial_headers.get('Accept')}") # 4. 处理请求体 (Body) request_body_schema: Optional[Dict[str, Any]] = None # 确定请求体 schema 的来源,优先 OpenAPI 3.x 的 requestBody content_type_for_body_schema = initial_headers.get('Content-Type', 'application/json').split(';')[0].strip() if 'content' in request_body_spec and content_type_for_body_schema in request_body_spec['content']: request_body_schema = request_body_spec['content'][content_type_for_body_schema].get('schema') elif 'parameters' in endpoint_spec: # OpenAPI 2.0 (Swagger) body parameter body_param = next((p for p in parameters if p.get('in') == 'body'), None) if body_param and 'schema' in body_param: request_body_schema = body_param['schema'] if request_body_schema: should_use_llm_for_body = self._should_use_llm_for_param_type("body", test_case_instance) if should_use_llm_for_body and self.llm_service: self.logger.info(f"Attempting LLM generation for request body of '{operation_id}' with schema...") initial_body = self.llm_service.generate_data_from_schema(request_body_schema, endpoint_spec, "requestBody") if initial_body is None: self.logger.warning(f"LLM failed to generate request body for '{operation_id}'. Falling back to default schema generator.") initial_body = self._generate_data_from_schema(request_body_schema, context_name=f"{operation_id}_body", operation_id=operation_id) else: initial_body = self._generate_data_from_schema(request_body_schema, context_name=f"{operation_id}_body", operation_id=operation_id) self.logger.debug(f"Initial request body generated for '{operation_id}' (type: {type(initial_body)})") else: self.logger.debug(f"No request body schema found or applicable for '{operation_id}' with Content-Type '{content_type_for_body_schema}'. Initial body is None.") # 构造并返回APIRequestContext return APIRequestContext( method=method, url=path_template, # 传递路径模板, e.g. /items/{itemId} path_params=initial_path_params, query_params=initial_query_params, headers=initial_headers, body=initial_body, endpoint_spec=endpoint_spec # 传递原始的 endpoint_spec 字典 ) def _build_object_schema_for_params(self, params_spec_list: List[Dict[str, Any]], model_name_base: str) -> Tuple[Optional[Dict[str, Any]], str]: """ 将参数列表 (如路径参数、查询参数列表) 转换为一个单一的 "type: object" JSON schema, 以便用于创建 Pydantic 模型。 会尝试适配参数定义中缺少嵌套 'schema' 字段但有顶层 'type' 的情况。 """ if not params_spec_list: return None, model_name_base properties = {} required_params = [] parameter_names = [] for param_spec in params_spec_list: param_name = param_spec.get("name") if not param_name: self.logger.warning(f"参数定义缺少 'name' 字段: {param_spec}。已跳过。") continue parameter_names.append(param_name) param_schema = param_spec.get("schema") # ---- 适配开始 ---- if not param_schema and param_spec.get("type"): self.logger.debug(f"参数 '{param_name}' 缺少嵌套 'schema' 字段,尝试从顶层 'type' 构建临时schema。 Param spec: {param_spec}") temp_schema = {"type": param_spec.get("type")} # 从 param_spec 顶层提取其他相关字段到 temp_schema for key in ["format", "default", "example", "description", "enum", "minimum", "maximum", "minLength", "maxLength", "pattern", "items"]: # items 用于处理顶层定义的array if key in param_spec: temp_schema[key] = param_spec[key] param_schema = temp_schema # ---- 适配结束 ---- if not param_schema: # 如果适配后仍然没有schema self.logger.warning(f"参数 '{param_name}' 缺少 'schema' 定义且无法从顶层构建: {param_spec}。已跳过。") continue # 处理 $ref (简单情况,假设ref在components.schemas) # 更复杂的 $ref 解析可能需要访问完整的OpenAPI文档 if isinstance(param_schema, dict) and "$ref" in param_schema: # 确保 param_schema 是字典再检查 $ref ref_path = param_schema["$ref"] # 这是一个非常简化的$ref处理,实际可能需要解析整个文档 self.logger.warning(f"参数 '{param_name}' 的 schema 包含 $ref '{ref_path}',当前不支持自动解析。请确保schema是内联的。") # 可以尝试提供一个非常基础的schema,或者跳过这个参数,或者让_generate_data_from_schema处理 properties[param_name] = {"type": "string", "description": f"Reference to {ref_path}"} elif isinstance(param_schema, dict): # 确保 param_schema 是字典 properties[param_name] = param_schema else: self.logger.warning(f"参数 '{param_name}' 的 schema 不是一个有效的字典: {param_schema}。已跳过。") continue if param_spec.get("required", False): required_params.append(param_name) if not properties: # 如果所有参数都无效 return None, model_name_base model_name = f"{model_name_base}_{'_'.join(sorted(parameter_names))}" # 使模型名更具唯一性 object_schema = { "type": "object", "properties": properties, } if required_params: object_schema["required"] = required_params self.logger.debug(f"[{model_name_base}] 为参数集 {parameter_names} 构建的最终 Object Schema: {json.dumps(object_schema, indent=2)}, 模型名: {model_name}") return object_schema, model_name def _generate_params_from_list(self, params_spec_list: List[Dict[str, Any]], operation_id: str, param_type: str) -> Dict[str, Any]: """ 遍历参数定义列表,使用 _generate_data_from_schema 为每个参数生成数据。 会尝试适配参数定义中缺少嵌套 'schema' 字段但有顶层 'type' 的情况。 """ generated_params: Dict[str, Any] = {} if not params_spec_list: self.logger.info(f"[{operation_id}] 没有定义 {param_type} 参数。") return generated_params self.logger.info(f"[{operation_id}] 使用常规方法生成 {param_type} 参数。") for param_spec in params_spec_list: param_name = param_spec.get("name") param_schema = param_spec.get("schema") # ---- 适配开始 ---- if not param_schema and param_spec.get("type"): self.logger.debug(f"参数 '{param_name}' ('{param_type}' 类型) 缺少嵌套 'schema' 字段,尝试从顶层 'type' 构建临时schema用于常规生成。 Param spec: {param_spec}") temp_schema = {"type": param_spec.get("type")} # 从 param_spec 顶层提取其他相关字段到 temp_schema for key in ["format", "default", "example", "description", "enum", "minimum", "maximum", "minLength", "maxLength", "pattern", "items"]: # items 用于处理顶层定义的array if key in param_spec: temp_schema[key] = param_spec[key] param_schema = temp_schema # ---- 适配结束 ---- if param_name and param_schema and isinstance(param_schema, dict): # 确保param_schema是字典 generated_value = self._generate_data_from_schema( param_schema, context_name=f"{param_type} parameter '{param_name}'", operation_id=operation_id ) if generated_value is not None: generated_params[param_name] = generated_value elif param_spec.get("required"): self.logger.warning(f"[{operation_id}] 未能为必需的 {param_type} 参数 '{param_name}' 生成数据 (schema: {param_schema}),且其 schema 中可能没有有效的默认值或示例。") else: self.logger.warning(f"[{operation_id}] 跳过无效的 {param_type} 参数定义 (名称: {param_name}, schema: {param_schema}): {param_spec}") self.logger.info(f"[{operation_id}] 常规方法生成的 {param_type} 参数: {generated_params}") return generated_params def run_test_for_endpoint(self, endpoint: Union[YAPIEndpoint, SwaggerEndpoint], global_api_spec: Union[ParsedYAPISpec, ParsedSwaggerSpec] ) -> TestResult: endpoint_id = f"{getattr(endpoint, 'method', 'GET').upper()} {getattr(endpoint, 'path', '/')}" endpoint_name = getattr(endpoint, 'title', '') or getattr(endpoint, 'summary', '') or endpoint_id self.logger.info(f"开始为端点测试: {endpoint_id} ({endpoint_name})") endpoint_test_result = TestResult( endpoint_id=endpoint_id, endpoint_name=endpoint_name, ) if not self.test_case_registry: self.logger.warning(f"TestCaseRegistry 未初始化,无法为端点 '{endpoint_id}' 执行自定义测试用例。") endpoint_test_result.overall_status = TestResult.Status.SKIPPED endpoint_test_result.error_message = "TestCaseRegistry 未初始化。" endpoint_test_result.finalize_endpoint_test() return endpoint_test_result applicable_test_case_classes_unordered = self.test_case_registry.get_applicable_test_cases( endpoint_method=endpoint.method.upper(), endpoint_path=endpoint.path ) if not applicable_test_case_classes_unordered: self.logger.info(f"端点 '{endpoint_id}' 没有找到适用的自定义测试用例。") endpoint_test_result.finalize_endpoint_test() # 确保在返回前调用 return endpoint_test_result # 根据 execution_order 排序测试用例 applicable_test_case_classes = sorted( applicable_test_case_classes_unordered, key=lambda tc_class: tc_class.execution_order ) self.logger.info(f"端点 '{endpoint_id}' 发现了 {len(applicable_test_case_classes)} 个适用的测试用例 (已排序): {[tc.id for tc in applicable_test_case_classes]}") critical_setup_test_failed = False critical_setup_failure_reason = "" for tc_class in applicable_test_case_classes: start_single_tc_time = time.monotonic() # 用于计算跳过测试用例的持续时间 if critical_setup_test_failed: self.logger.warning(f"由于关键的前置测试用例失败,跳过测试用例 '{tc_class.id}' for '{endpoint_id}'. 原因: {critical_setup_failure_reason}") skipped_tc_duration = time.monotonic() - start_single_tc_time executed_case_result = ExecutedTestCaseResult( test_case_id=tc_class.id, test_case_name=tc_class.name, test_case_severity=tc_class.severity, status=ExecutedTestCaseResult.Status.SKIPPED, validation_points=[], message=f"由于关键的前置测试失败而被跳过: {critical_setup_failure_reason}", duration=skipped_tc_duration ) else: self.logger.debug(f"准备执行测试用例 '{tc_class.id}' for '{endpoint_id}'") executed_case_result = self._execute_single_test_case( test_case_class=tc_class, endpoint_spec=endpoint, global_api_spec=global_api_spec ) # 检查是否是关键测试用例以及是否失败 if hasattr(tc_class, 'is_critical_setup_test') and tc_class.is_critical_setup_test: if executed_case_result.status in [ExecutedTestCaseResult.Status.FAILED, ExecutedTestCaseResult.Status.ERROR]: critical_setup_test_failed = True critical_setup_failure_reason = f"关键测试 '{tc_class.id}' 失败 (状态: {executed_case_result.status.value})。消息: {executed_case_result.message}" self.logger.error(f"关键的前置测试用例 '{tc_class.id}' for '{endpoint_id}' 失败。后续测试将被跳过。原因: {critical_setup_failure_reason}") endpoint_test_result.add_executed_test_case_result(executed_case_result) # 日志部分可以保持不变或根据需要调整 if executed_case_result.status.value == ExecutedTestCaseResult.Status.FAILED.value: self.logger.debug(f"\033[91m ❌ 测试用例 '{tc_class.id}' 执行失败。\033[0m") elif executed_case_result.status.value == ExecutedTestCaseResult.Status.PASSED.value : self.logger.debug(f"\033[92m ✅ 测试用例 '{tc_class.id}' 执行成功。\033[0m") # 对于SKIPPED和ERROR状态,可以添加不同颜色的日志 elif executed_case_result.status.value == ExecutedTestCaseResult.Status.SKIPPED.value: self.logger.debug(f"\033[93m ⏭️ 测试用例 '{tc_class.id}' 被跳过。\033[0m") # 黄色 elif executed_case_result.status.value == ExecutedTestCaseResult.Status.ERROR.value: self.logger.debug(f"\033[91m 💥 测试用例 '{tc_class.id}' 执行时发生错误。\033[0m") # 红色 (与FAILED相同或不同) self.logger.debug(f"测试用例 '{tc_class.id}' 执行完毕,状态: {executed_case_result.status.value}") endpoint_test_result.finalize_endpoint_test() self.logger.info(f"端点 '{endpoint_id}' 测试完成,最终状态: {endpoint_test_result.overall_status.value}") return endpoint_test_result def run_tests_from_yapi(self, yapi_file_path: str, categories: Optional[List[str]] = None, custom_test_cases_dir: Optional[str] = None ) -> TestSummary: if custom_test_cases_dir and (not self.test_case_registry or self.test_case_registry.test_cases_dir != custom_test_cases_dir): self.logger.info(f"从 run_tests_from_yapi 使用新的目录重新初始化 TestCaseRegistry: {custom_test_cases_dir}") try: self.test_case_registry = TestCaseRegistry(test_cases_dir=custom_test_cases_dir) self.logger.info(f"TestCaseRegistry (re)initialization complete, found {len(self.test_case_registry.get_all_test_case_classes())} test case classes.") except Exception as e: self.logger.error(f"从 run_tests_from_yapi 重新初始化 TestCaseRegistry 失败: {e}", exc_info=True) self.logger.info(f"从YAPI文件加载API定义: {yapi_file_path}") parsed_yapi = self.parser.parse_yapi_spec(yapi_file_path) summary = TestSummary() if not parsed_yapi: self.logger.error(f"解析YAPI文件失败: {yapi_file_path}") summary.finalize_summary() return summary endpoints_to_test = parsed_yapi.endpoints if categories: endpoints_to_test = [ep for ep in endpoints_to_test if ep.category_name in categories] summary.set_total_endpoints_defined(len(endpoints_to_test)) total_applicable_tcs = 0 if self.test_case_registry: for endpoint_spec in endpoints_to_test: total_applicable_tcs += len( self.test_case_registry.get_applicable_test_cases( endpoint_spec.method.upper(), endpoint_spec.path ) ) summary.set_total_test_cases_applicable(total_applicable_tcs) for endpoint in endpoints_to_test: result = self.run_test_for_endpoint(endpoint, global_api_spec=parsed_yapi) summary.add_endpoint_result(result) summary.finalize_summary() return summary def run_tests_from_swagger(self, swagger_file_path: str, tags: Optional[List[str]] = None, custom_test_cases_dir: Optional[str] = None ) -> TestSummary: if custom_test_cases_dir and (not self.test_case_registry or self.test_case_registry.test_cases_dir != custom_test_cases_dir): self.logger.info(f"从 run_tests_from_swagger 使用新的目录重新初始化 TestCaseRegistry: {custom_test_cases_dir}") try: self.test_case_registry = TestCaseRegistry(test_cases_dir=custom_test_cases_dir) self.logger.info(f"TestCaseRegistry (re)initialization complete, found {len(self.test_case_registry.get_all_test_case_classes())} test case classes.") except Exception as e: self.logger.error(f"从 run_tests_from_swagger 重新初始化 TestCaseRegistry 失败: {e}", exc_info=True) self.logger.info(f"从Swagger文件加载API定义: {swagger_file_path}") parsed_swagger = self.parser.parse_swagger_spec(swagger_file_path) summary = TestSummary() if not parsed_swagger: self.logger.error(f"解析Swagger文件失败: {swagger_file_path}") summary.finalize_summary() return summary endpoints_to_test = parsed_swagger.endpoints if tags: endpoints_to_test = [ep for ep in endpoints_to_test if any(tag in ep.tags for tag in tags)] summary.set_total_endpoints_defined(len(endpoints_to_test)) total_applicable_tcs = 0 if self.test_case_registry: for endpoint_spec in endpoints_to_test: total_applicable_tcs += len( self.test_case_registry.get_applicable_test_cases( endpoint_spec.method.upper(), endpoint_spec.path ) ) summary.set_total_test_cases_applicable(total_applicable_tcs) for endpoint in endpoints_to_test: result = self.run_test_for_endpoint(endpoint, global_api_spec=parsed_swagger) summary.add_endpoint_result(result) summary.finalize_summary() return summary def _generate_data_from_schema(self, schema: Dict[str, Any], context_name: Optional[str] = None, operation_id: Optional[str] = None) -> Any: """ 根据JSON Schema生成测试数据 (此方法基本保持不变,可能被测试用例或编排器内部使用) 增加了 context_name 和 operation_id 用于更详细的日志。 """ log_prefix = f"[{operation_id}] " if operation_id else "" context_log = f" (context: {context_name})" if context_name else "" if not schema or not isinstance(schema, dict): self.logger.debug(f"{log_prefix}_generate_data_from_schema: 提供的 schema 无效或为空{context_log}: {schema}") return None schema_type = schema.get('type') if 'example' in schema: self.logger.debug(f"{log_prefix}使用 schema 中的 'example' 值 for{context_log}: {schema['example']}") return schema['example'] if 'default' in schema: self.logger.debug(f"{log_prefix}使用 schema 中的 'default' 值 for{context_log}: {schema['default']}") return schema['default'] if schema_type == 'object': result = {} properties = schema.get('properties', {}) self.logger.debug(f"{log_prefix}生成 object 类型数据 for{context_log}. Properties: {list(properties.keys())}") for prop_name, prop_schema in properties.items(): # 递归调用时传递上下文,但稍微修改一下 context_name nested_context = f"{context_name}.{prop_name}" if context_name else prop_name result[prop_name] = self._generate_data_from_schema(prop_schema, nested_context, operation_id) return result if result else {} elif schema_type == 'array': items_schema = schema.get('items', {}) min_items = schema.get('minItems', 1 if schema.get('default') is None and schema.get('example') is None else 0) self.logger.debug(f"{log_prefix}生成 array 类型数据 for{context_log}. Items schema: {items_schema}, minItems: {min_items}") if min_items == 0 and (schema.get('default') == [] or schema.get('example') == []): return [] num_items_to_generate = max(1, min_items) generated_array = [] for i in range(num_items_to_generate): item_context = f"{context_name}[{i}]" if context_name else f"array_item[{i}]" generated_array.append(self._generate_data_from_schema(items_schema, item_context, operation_id)) return generated_array elif schema_type == 'string': string_format = schema.get('format', '') val = None if 'enum' in schema and schema['enum']: val = schema['enum'][0] elif string_format == 'date': val = '2023-01-01' elif string_format == 'date-time': val = datetime.datetime.now().isoformat() elif string_format == 'email': val = 'test@example.com' elif string_format == 'uuid': import uuid; val = str(uuid.uuid4()) else: val = 'example_string' self.logger.debug(f"{log_prefix}生成 string 类型数据 ('{string_format}') for{context_log}: {val}") return val elif schema_type == 'number' or schema_type == 'integer': val_to_return = schema.get('default', schema.get('example')) if val_to_return is not None: self.logger.debug(f"{log_prefix}使用 number/integer 的 default/example 值 for{context_log}: {val_to_return}") return val_to_return minimum = schema.get('minimum') # maximum = schema.get('maximum') # Not used yet for generation, but could be if minimum is not None: val_to_return = minimum else: val_to_return = 0 if schema_type == 'integer' else 0.0 self.logger.debug(f"{log_prefix}生成 number/integer 类型数据 for{context_log}: {val_to_return}") return val_to_return elif schema_type == 'boolean': val = schema.get('default', schema.get('example', False)) self.logger.debug(f"{log_prefix}生成 boolean 类型数据 for{context_log}: {val}") return val elif schema_type == 'null': self.logger.debug(f"{log_prefix}生成 null 类型数据 for{context_log}") return None self.logger.debug(f"{log_prefix}_generate_data_from_schema: 未知或不支持的 schema 类型 '{schema_type}' for{context_log}. Schema: {schema}") return None def _format_url_with_path_params(self, path_template: str, path_params: Dict[str, Any]) -> str: """ 使用提供的路径参数格式化URL路径模板。 例如: path_template='/users/{userId}/items/{itemId}', path_params={'userId': 123, 'itemId': 'abc'} 会返回 '/users/123/items/abc' 同时处理 base_url. """ # 首先确保 path_template 不以 '/' 开头,如果 self.base_url 已经以 '/' 结尾 # 或者确保它们之间只有一个 '/' formatted_path = path_template for key, value in path_params.items(): placeholder = f"{{{key}}}" if placeholder in formatted_path: formatted_path = formatted_path.replace(placeholder, str(value)) else: self.logger.warning(f"路径参数 '{key}' 在路径模板 '{path_template}' 中未找到占位符。") # 拼接 base_url 和格式化后的路径 # 确保 base_url 和 path 之间只有一个斜杠 if self.base_url.endswith('/') and formatted_path.startswith('/'): url = self.base_url + formatted_path[1:] elif not self.base_url.endswith('/') and not formatted_path.startswith('/'): if formatted_path: # 避免在 base_url 后添加不必要的 '/' (如果 formatted_path 为空) url = self.base_url + '/' + formatted_path else: url = self.base_url else: url = self.base_url + formatted_path return url def _resolve_json_schema_references(self, schema_to_resolve: Any, full_api_spec: Dict[str, Any], max_depth=10, current_depth=0) -> Any: """ 递归解析JSON Schema中的$ref引用。 Args: schema_to_resolve: 当前需要解析的schema部分 (可以是字典、列表或基本类型)。 full_api_spec: 完整的API规范字典,用于查找$ref路径。 max_depth: 最大递归深度,防止无限循环。 current_depth: 当前递归深度。 Returns: 解析了$ref的schema部分。 """ if current_depth > max_depth: self.logger.warning(f"达到最大$ref解析深度 ({max_depth}),可能存在循环引用。停止进一步解析。") return schema_to_resolve if isinstance(schema_to_resolve, dict): if "$ref" in schema_to_resolve: ref_path = schema_to_resolve["$ref"] if not isinstance(ref_path, str) or not ref_path.startswith("#/"): self.logger.warning(f"不支持的$ref格式或外部引用: {ref_path}。仅支持本地引用 (e.g., #/components/schemas/MyModel)。") return schema_to_resolve # 或者根据需要返回错误/None path_parts = ref_path[2:].split('/') # Remove '#/' and split resolved_component = full_api_spec try: for part in path_parts: if isinstance(resolved_component, list): # Handle paths like #/components/parameters/0 part = int(part) resolved_component = resolved_component[part] # 递归解析引用过来的组件,以处理嵌套的$ref # 同时传递原始$ref携带的其他属性(如description, nullable等可以覆盖引用的内容) # See: https://json-schema.org/understanding-json-schema/structuring.html#merging # For simplicity here, we prioritize the resolved component, but a more robust solution # would merge properties from the $ref object itself with the resolved one. # Create a copy of the resolved component to avoid modifying the original spec # and to allow merging of sibling keywords if any. component_copy = copy.deepcopy(resolved_component) # Merge sibling keywords from the $ref object into the resolved component. # Keywords in the $ref object override those in the referenced schema. merged_schema = component_copy if isinstance(component_copy, dict): # Ensure it's a dict before trying to update for key, value in schema_to_resolve.items(): if key != "$ref": merged_schema[key] = value # Override or add self.logger.debug(f"成功解析并合并 $ref: '{ref_path}'。正在递归解析其内容。") return self._resolve_json_schema_references(merged_schema, full_api_spec, max_depth, current_depth + 1) except (KeyError, IndexError, TypeError, ValueError) as e: self.logger.error(f"解析$ref '{ref_path}' 失败: {e}.路径部分: {path_parts}. 当前组件类型: {type(resolved_component)}", exc_info=True) return schema_to_resolve # 返回原始的$ref对象或错误指示 # 如果不是$ref,则递归处理字典中的每个值 # 使用copy避免在迭代时修改字典 resolved_dict = {} for key, value in schema_to_resolve.items(): resolved_dict[key] = self._resolve_json_schema_references(value, full_api_spec, max_depth, current_depth + 1) return resolved_dict elif isinstance(schema_to_resolve, list): # 递归处理列表中的每个元素 return [self._resolve_json_schema_references(item, full_api_spec, max_depth, current_depth + 1) for item in schema_to_resolve] else: # 基本类型 (string, number, boolean, null) 不需要解析 return schema_to_resolve def _util_find_removable_field_path_recursive(self, current_schema: Dict[str, Any], current_path: List[str], full_api_spec_for_refs: Dict[str, Any]) -> Optional[List[Union[str, int]]]: """ (框架辅助方法) 递归查找第一个可移除的必填字段的路径。 此方法现在需要 full_api_spec_for_refs 以便在需要时解析 $ref。 """ # 首先解析当前 schema,以防它是 $ref resolved_schema = self._resolve_json_schema_references(current_schema, full_api_spec_for_refs) if not isinstance(resolved_schema, dict) or resolved_schema.get("type") != "object": return None required_fields_at_current_level = resolved_schema.get("required", []) properties = resolved_schema.get("properties", {}) self.logger.debug(f"[Util] 递归查找路径: {current_path}, 当前层级必填字段: {required_fields_at_current_level}, 属性: {list(properties.keys())}") # 策略1: 查找当前层级直接声明的必填字段 if required_fields_at_current_level and properties: for field_name in required_fields_at_current_level: if field_name in properties: self.logger.info(f"[Util] 策略1: 在路径 {'.'.join(map(str,current_path)) if current_path else 'root'} 找到可直接移除的必填字段: '{field_name}'") return current_path + [field_name] # 策略2: 查找数组属性,看其内部item是否有必填字段 if properties: for prop_name, prop_schema_orig in properties.items(): prop_schema = self._resolve_json_schema_references(prop_schema_orig, full_api_spec_for_refs) if isinstance(prop_schema, dict) and prop_schema.get("type") == "array": items_schema_orig = prop_schema.get("items") if isinstance(items_schema_orig, dict): items_schema = self._resolve_json_schema_references(items_schema_orig, full_api_spec_for_refs) if isinstance(items_schema, dict) and items_schema.get("type") == "object": item_required_fields = items_schema.get("required", []) item_properties = items_schema.get("properties", {}) if item_required_fields and item_properties: first_required_field_in_item = next((rf for rf in item_required_fields if rf in item_properties), None) if first_required_field_in_item: self.logger.info(f"[Util] 策略2: 在数组属性 '{prop_name}' (路径 {'.'.join(map(str,current_path)) if current_path else 'root'}) 的元素内找到必填字段: '{first_required_field_in_item}'. 路径: {current_path + [prop_name, 0, first_required_field_in_item]}") return current_path + [prop_name, 0, first_required_field_in_item] # 策略3: 递归到子对象中查找(可选,但对于通用工具可能有用) # 注意:这可能会找到非顶层必填对象内部的必填字段。 # if properties: # for prop_name, prop_schema_orig_for_recurse in properties.items(): # prop_schema_for_recurse = self._resolve_json_schema_references(prop_schema_orig_for_recurse, full_api_spec_for_refs) # if isinstance(prop_schema_for_recurse, dict) and prop_schema_for_recurse.get("type") == "object": # # Avoid re-checking fields already covered by strategy 1 if they were required at this level # # if prop_name not in required_fields_at_current_level: # self.logger.debug(f"[Util] 策略3: 尝试递归进入对象属性 '{prop_name}' (路径 {current_path})") # found_path_deeper = self._util_find_removable_field_path_recursive(prop_schema_for_recurse, current_path + [prop_name], full_api_spec_for_refs) # if found_path_deeper: # return found_path_deeper self.logger.debug(f"[Util] 在路径 {'.'.join(map(str,current_path)) if current_path else 'root'} 未通过任何策略找到可移除的必填字段。") return None def _util_remove_value_at_path(self, data_container: Any, path: List[Union[str, int]]) -> Tuple[Any, Any, bool]: """ (框架辅助方法) 从嵌套的字典/列表中移除指定路径的值。 返回 (修改后的容器, 被移除的值, 是否成功)。 """ if not path: self.logger.error("[Util] _util_remove_value_at_path: 路径不能为空。") return data_container, None, False # 深拷贝以避免修改原始数据,除非调用者期望如此 # 如果 data_container 是 None 且路径非空,则尝试构建最小结构 if data_container is None: if isinstance(path[0], str): # 路径以字段名开始,期望字典 container_copy = {} elif isinstance(path[0], int): # 路径以索引开始,期望列表 container_copy = [] else: self.logger.error(f"[Util] _util_remove_value_at_path: 路径的第一个元素 '{path[0]}' 类型未知。") return data_container, None, False else: container_copy = copy.deepcopy(data_container) current_level = container_copy original_value = None try: for i, key_or_index in enumerate(path): is_last_element = (i == len(path) - 1) if is_last_element: if isinstance(key_or_index, str): # Key for a dictionary (field name) if isinstance(current_level, dict) and key_or_index in current_level: original_value = current_level.pop(key_or_index) self.logger.info(f"[Util] 从路径 '{'.'.join(map(str,path))}' 成功移除字段 '{key_or_index}' (原值: '{original_value}')。") return container_copy, original_value, True elif isinstance(current_level, dict): self.logger.warning(f"[Util] 路径的最后一部分 '{key_or_index}' (string key) 在对象中未找到。路径: {'.'.join(map(str,path))}") return container_copy, None, False # 字段不存在,但结构符合 else: self.logger.error(f"[Util] 路径的最后一部分 '{key_or_index}' (string key) 期望父级是字典,但找到 {type(current_level)}。路径: {'.'.join(map(str,path))}") return data_container, None, False # 结构不符,返回原始数据 else: # Last element of path is an index - this indicates removing an item from a list if isinstance(current_level, list) and isinstance(key_or_index, int) and 0 <= key_or_index < len(current_level): original_value = current_level.pop(key_or_index) self.logger.info(f"[Util] 从路径 '{'.'.join(map(str,path))}' 成功移除索引 '{key_or_index}' 的元素 (原值: '{original_value}')。") return container_copy, original_value, True elif isinstance(current_level, list): self.logger.warning(f"[Util] 路径的最后一部分索引 '{key_or_index}' 超出列表范围或类型不符。列表长度: {len(current_level)}. 路径: {'.'.join(map(str,path))}") return container_copy, None, False # 索引无效,但结构符合 else: self.logger.error(f"[Util] 路径的最后一部分 '{key_or_index}' 期望父级是列表,但找到 {type(current_level)}。路径: {'.'.join(map(str,path))}") return data_container, None, False # 结构不符 else: # Not the last element, so we are traversing or building the structure next_key_or_index = path[i+1] if isinstance(key_or_index, str): # Current path part is a dictionary key if not isinstance(current_level, dict): self.logger.debug(f"[Util] 路径期望字典,但在 '{key_or_index}' (父级)处找到 {type(current_level)}. 将创建空字典。") # This should only happen if current_level was initially part of a None container and we're building it up. # If current_level is not a dict and it's not the root being built, it's an error. # For robust path creation from None: if current_level is container_copy and not container_copy : # building from scratch current_level = {} # This change needs to be reflected in container_copy if this is the root if i == 0: container_copy = current_level else: # This case is complex: how to link back if not root? self.logger.error(f"[Util] 无法在非根级别从非字典创建路径。") return data_container, None, False else: # Path expects dict, but found something else not at root. self.logger.error(f"[Util] 路径期望字典,但在 '{key_or_index}' 处找到 {type(current_level)}。") return data_container, None, False # Ensure the next level exists and is of the correct type if isinstance(next_key_or_index, int): # Next is an array index if key_or_index not in current_level or not isinstance(current_level.get(key_or_index), list): self.logger.debug(f"[Util] 路径 '{key_or_index}' 下需要列表 (为索引 {next_key_or_index} 做准备),将创建空列表。") current_level[key_or_index] = [] current_level = current_level[key_or_index] else: # Next is a dictionary key if key_or_index not in current_level or not isinstance(current_level.get(key_or_index), dict): self.logger.debug(f"[Util] 路径 '{key_or_index}' 下需要字典 (为键 '{next_key_or_index}' 做准备),将创建空字典。") current_level[key_or_index] = {} current_level = current_level[key_or_index] elif isinstance(key_or_index, int): # Current path part is an array index if not isinstance(current_level, list): self.logger.error(f"[Util] 路径期望列表以应用索引 '{key_or_index}',但找到 {type(current_level)}。") return data_container, None, False # Ensure the list is long enough, fill with dict/list based on next path element while len(current_level) <= key_or_index: if isinstance(next_key_or_index, str): # Next is a dict key self.logger.debug(f"[Util] 数组在索引 {key_or_index} 处需要元素,将添加空字典。") current_level.append({}) else: # Next is an array index self.logger.debug(f"[Util] 数组在索引 {key_or_index} 处需要元素,将添加空列表。") current_level.append([]) # Ensure the element at index is of the correct type for the next key/index if isinstance(next_key_or_index, str): # Next is a dict key if not isinstance(current_level[key_or_index], dict): self.logger.debug(f"[Util] 数组项 at index {key_or_index} 需要是字典。将被替换。") current_level[key_or_index] = {} elif isinstance(next_key_or_index, int): # Next is an array index if not isinstance(current_level[key_or_index], list): self.logger.debug(f"[Util] 数组项 at index {key_or_index} 需要是列表。将被替换。") current_level[key_or_index] = [] current_level = current_level[key_or_index] else: self.logger.error(f"[Util] 路径部分 '{key_or_index}' 类型未知 ({type(key_or_index)}).") return data_container, None, False except Exception as e: self.logger.error(f"[Util] 在准备移除字段路径 '{'.'.join(map(str,path))}' 时发生错误: {e}", exc_info=True) return data_container, None, False self.logger.error(f"[Util] _util_remove_value_at_path 未能在循环内按预期返回。路径: {'.'.join(map(str,path))}") return data_container, None, False