测试代码

This commit is contained in:
veypi 2021-01-05 21:30:25 +08:00
parent 3649a05348
commit 07274909e2
2 changed files with 121 additions and 0 deletions

View File

@ -0,0 +1,35 @@
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_squared_error, r2_score
# 导入数据
dataset_url = r'/Users/light/workspace/courses/numerical_analysis/8/wine.csv'
data = pd.read_csv(dataset_url, sep=';')
print(data)
# print(data.describe())
# 把数据分为训练集和测试集
y = data.quality
X = data.drop('quality', axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.1,
random_state=123,
stratify=y)
# 声明数据预处理步骤
pipeline = make_pipeline(preprocessing.StandardScaler(),
RandomForestRegressor(n_estimators=100))
# 声明超参数
hyperparameters = {'randomforestregressor__max_features': ['auto', 'sqrt', 'log2'],
'randomforestregressor__max_depth': [None, 5, 3, 1]}
# 优化模型
clf = GridSearchCV(pipeline, hyperparameters, cv=10)
clf.fit(X_train, y_train)
# 评估模型及预测
pred = clf.predict(X_test)
print(r2_score(y_test, pred))
print(mean_squared_error(y_test, pred))

View File

@ -0,0 +1,86 @@
# -*- coding=utf-8 -*-
import numpy as np
import tensorflow as tf
from sklearn.metrics import mean_squared_error, r2_score
def normalize(x):
mean = np.mean(x)
std = np.std(x)
return (x - mean) / std
def append_bias_reshape(features, labels):
m = features.shape[0]
n = features.shape[1]
x = np.reshape(np.c_[np.ones(m), features], [m, n + 1])
y = np.reshape(labels, [m, 1])
return x, y
def load_data():
p = r'/Users/light/workspace/courses/numerical_analysis/8/wine.csv'
with open(p, encoding='utf-8') as f:
data = np.loadtxt(f, delimiter=";", skiprows=1).astype('float64')
return data[:, :11], data[:, 11:]
x_all, y_all = load_data()
x_test = x_all[1400:, :11]
y_test = y_all[1400:]
y_train = y_all[:1400]
x_train = normalize(x_all[:1400, 0:1])
for i in range(1, 11):
x_train = np.concatenate((x_train, normalize(x_all[:1400, i:i + 1])), 1)
# x_train, y_train = append_bias_reshape(x_train, y_train)
# dataset = tfdata.Dataset.from_tensor_slices((x_train, y_train))
print(x_train.dtype)
W = tf.Variable(np.random.random([11, 1]))
b = tf.Variable(np.random.random([1, 1]))
def linear_regression(x):
return tf.matmul(x, W) + b
# 均方差
def mean_square(y_pred, y_true):
return tf.reduce_sum(tf.pow(y_pred - y_true, 2)) / (2 * 1400)
optimizer = tf.optimizers.SGD(0.01)
# 优化过程
def run_optimization():
# 将计算封装在GradientTape中以实现自动微分
with tf.GradientTape() as g:
pred = linear_regression(x_train)
loss = mean_square(pred, y_train)
# 计算梯度
gradients = g.gradient(loss, [W, b])
# 按gradients更新 W 和 b
optimizer.apply_gradients(zip(gradients, [W, b]))
training_steps = 1000
display_step = 50
# 针对给定训练步骤数开始训练
for step in range(1, training_steps + 1):
# 运行优化以更新W和b值
run_optimization()
if step % display_step == 0:
pred = linear_regression(x_train)
loss = mean_square(pred, y_train)
print("step: %i, loss: %f, W: %s, b: %s" % (step, loss, W.numpy(), b.numpy()))
result = linear_regression(x_test).numpy().round()
delta = result - y_test
print(f"根均方误差(RMSE){np.sqrt(mean_squared_error(result, y_test))}")
print(f"测试集R^2{r2_score(y_test, result)}")