完善adc分类

This commit is contained in:
veypi 2021-11-11 05:08:59 +08:00
parent f5f5c16caa
commit e37c3eb3cd
2 changed files with 97 additions and 8 deletions

View File

@ -12,22 +12,32 @@
- 并行ADC
并行结构的数据转换器的基本思想是同时比较待转换的信号电平与所有级别的量化电平之间的关系在模拟信号和数字信号之间相互转换。并行结构所对应的A/D和D/A转换器件分别为Flash-ADC和串状DAC。
并行结构的数据转换器的基本思想是同时比较待转换的信号电平与所有级别的量化电平之间的关系在模拟信号和数字信号之间相互转换。并行结构所对应的A/D和D/A转换器件分别为Flash-ADC和串状DAC。
Flash-ADC内含一列并联比较器一列由电阻分压器产生的电平作为相应的比较器的基准电压。被转换的模拟电压信号同时加到全部比较器上各比较器的输出经编码后作为ADC的输出如图2.12所示。
Flash-ADC内含一列并联比较器一列由电阻分压器产生的电平作为相应的比较器的基准电压。被转换的模拟电压信号同时加到全部比较器上各比较器的输出经编码后作为ADC的输出如图2.12所示。
一个分辨率为Nbit的Flash-ADC含有2N个精密电阻2N1个高速比较器分辨率每增加1bit需要增加2N个精密电阻和2N个高速比较器这会大大增加集成的复杂度和器件功耗。因此一般Flash-ADC的分辨率无法达到很高。
一个分辨率为Nbit的Flash-ADC含有2N个精密电阻2N1个高速比较器分辨率每增加1bit需要增加2N个精密电阻和2N个高速比较器这会大大增加集成的复杂度和器件功耗。因此一般Flash-ADC的分辨率无法达到很高。
串状DAC是实现Flash-ADC的逆操作因使用电阻串来构造参考电压而得名在有的书中也被称为开尔文分配器。串状DAC依靠待转换数据来控制一组开关以产生合适的电流通过精密电阻从而产生合适的模拟信号电压。
串状DAC是实现Flash-ADC的逆操作因使用电阻串来构造参考电压而得名在有的书中也被称为开尔文分配器。串状DAC依靠待转换数据来控制一组开关以产生合适的电流通过精密电阻从而产生合适的模拟信号电压。
并行结构只需要一级模拟电路因此具有设计简单转换时间短速度快的优点在所有可能的结构中提供最快的数据转换。在分辨率要求较低的情况下Flash-ADC和串状DAC两种结构都容易采用超大规模集成电路VLSI进行设计。然而由于比较器或开关和精密电阻的数量随着转换器的分辨率呈指数增长Flash-ADC和串状DAC的芯片面积和功耗也随之呈指数增长。
并行结构只需要一级模拟电路因此具有设计简单转换时间短速度快的优点在所有可能的结构中提供最快的数据转换。在分辨率要求较低的情况下Flash-ADC和串状DAC两种结构都容易采用超大规模集成电路VLSI进行设计。然而由于比较器或开关和精密电阻的数量随着转换器的分辨率呈指数增长Flash-ADC和串状DAC的芯片面积和功耗也随之呈指数增长。
- 流水线型ADC
在采样率于5msps到10msps之间的应用中流水线ADC体系结构占主导地位。尽管在20世纪80年代和90年代初全并行体系结构主导了8 bit video IC ADC市场但流水线体系结构在现代应用中已基本上取代了闪存ADC。有少量采样率大于1GHz的高功率砷化镓GaAs闪存转换器但分辨率限于6或8位。然而flash转换器仍然是高分辨率流水线ADC的一个流行构件。
流水线ADC的应用包括视频、图像处理、通信等方面。该体系结构适用于各种成本相对较低的IC工艺如CMOS和BiCMOS。目前的技术在采样率大于100msps时能达到12到16位的分辨率。
![image-20211111045023213](https://public.veypi.com/img/screenshot/20211111045023.png)
流水线 ADC 通常由 N 个位数相同或不相同的 低分辨率子级组成 ,除最后一级外 ,每个子级都包括 子 ADC 、子 DAC 、减法电路和余量放大器 ,其中子 DAC 、减法电路和余量放大器组合在一起称为 MDAC
- 逐次逼近型ADCSAR)
多年来SAR ADC一直是数据采集系统的主流。最近的设计改进将这些ADC的采样频率扩展到兆赫范围分辨率为18位。模拟设备PulSAR®系列SAR ADC使用内部开关电容技术和自动校准并在CMOS工艺上以2 MSPSAD7641提供18位无需昂贵的薄膜激光微调。在16位级别AD76256 MSPS和AD762610 MSPS也代表了突破性的技术。
![image-20211111044722793](https://public.veypi.com/img/screenshot/20211111044722.png)
SAR ADC 分多步执行转换, 转换步骤数等 于ADC转换器中的位数。每个步骤均由ADC时钟驱动。每个ADC时钟从结果到输出产生一 位。ADC的内部设计基于切换电容技术。
以10bit ADC为例
@ -40,7 +50,29 @@
- ∑–△ ADC
-
sigma-delta ADC是现代声带、音频和高分辨率精密工业测量应用的首选转换器。高度数字化的体系结构非常适合现代fine-line CMOS工艺因此可以在不显著增加成本的情况下轻松添加数字功能。由于它的广泛使用了解这种转换器架构背后的基本原理非常重要。
![image-20211111045737812](https://public.veypi.com/img/screenshot/20211111045737.png)
![image-20211111035553929](https://public.veypi.com/img/screenshot/20211111035553.png)
这种ADC又称为过采样转换器其结构较简单。它由∑△调制器及连接于其后的数字滤故器构成。调制器的结构近似于双斜率ADC包括一个积分器和一个比较器以及含有一个1位DAC的反馈环。这个内置的DAC仅仅是一个开关。它将积分器输入切换到一个正或负的参考电压。∑△ADC还包括一个时钟单元.为调制器和数字滤波器提供适当的定时。窄带信号送人∑△ADC后以非常低的分辨率(1位)进行量化,但采样频率却非常高.如2MHz或更高。经过数字滤波处理后 .这种过采样速率被降低到8kHz左右,同时ADC的分辨率(即动态范围 ) 被提高到16位或更高。尽管比流水线ADC慢且输入带宽较窄△ADC仍具有以下三种优势
- 低价格、高性能
- 集成化的数字滤波
- 与DSP技术兼容,便于实现系统集成
- 积分型ADC
![image-20211111040447545](https://public.veypi.com/img/screenshot/20211111040447.png)
积分型ADC又称双斜率或多斜率数据转换器是应用最为广泛的转换器类型。经典的双斜率转换器包括两个主要部分:一部分电路采样并量化输入电压.产生一个时域间隔或脉冲序列;再由一个计数器将其转换为数字量输出。双斜率转换器采用一个带有输入切换开头关的模拟积分器一个比较器和一个计数单元。积分器对输入电压积分固定的时间间隔Tm幢诙时间间隔通常对应于内部计数单元的最大计数(如图4所示)时间到达后将计数器复位井将积分器输入连接到反极性(负)参考电压。在这个反扳性信号作用下积分器被“反向积分直到括出回到零,井使计数器终止 ,积分器复位。
- 折叠型ADC (Folding ADC)
“折叠”架构使用每比特一级执行A/D转换总体概念如图1所示。每级一位且无纠错的多级流水线ADC基本上是bit-per-stage转换器。实际上这种类型的流水线转换器通常使用每级1.5bit的方法来提供错误校正。
![image-20211111050106566](https://public.veypi.com/img/screenshot/20211111050106.png)
#### ADC误差分析
@ -118,6 +150,8 @@
![image-20211109034652661](https://public.veypi.com/img/screenshot/20211109034652.png)
采用有 限状态机的方法一。1刨计算每级校准误差将每级的校 准信息存入寄存器中。误差运算结束后,将校准参数 对输出码进行校准运算得到校准后的数字码输出。此数字校准算法可校准对ADC线性影响最大的电容失配误差适合于1.5 bit级电路和多bit级电 路。明显提高了流水线ADC的无杂散动态范围和有 效精度,对模拟电路的改动较小。
- LMS
- 迭代法
@ -128,16 +162,21 @@
1. 研究目标
比较现有不同校准算法性能及功耗,针对片上系统adc优化控制面积和功耗
比较现有不同校准算法性能及功耗,针对adc片上校准系统做面积和功耗优化
2. 研究内容
流水线型ADC 逐次逼近型ADC ∑–△ ADC是现在比较常用和符合未来发展需要的ADC类型, 各有其优势和特点,实现
3. 拟解决的问题
4. 拟采取的研究方法及可行性分析
- 阅读相关文献,理解现有校准方案
- 根据调研至少确定五种以上校准方案在fpga上进行硬件实现
- 比较每种方案优劣,分析其性能功耗面积
- 优化和探索新的实现思路实现adc校准系统各项指标优化
### references
@ -156,6 +195,8 @@
[1]宫月红, 罗敏, 金杰. 流水线型ADC误差及相应校正策略研究[J]. 微电子学与计算机, 2014(5).
[1]贾英江, 王维斌. ADC综述[J]. 电子测量技术, 1999, 000(004):10-13.
[1] Fukazawa M , Oshima T , Fujiwara M , et al. A CT 2-2 MASH Δ Σ ADC With Multi-Rate LMS-Based Background Calibration and Input-Insensitive Quantization-Error Extraction[J]. IEEE Journal of Solid-State Circuits, 2021, PP(99):1-1. [>>>](https://public.veypi.com/research/digitalcalibration/citations/A%20CT%202-2%20MASH%20--%20ADC%20With%20Multi-Rate%20LMS-Based%20Background%20Calibration%20and%20Input-Insensitive%20Quantization-Error%20Extraction.pdf)
[1]Moon, Un-Ko, Bang-Sup, et al. Background digital calibration techniques for pipelined ADC's.[J]. IEEE Transactions on Circuits & Systems Part II: Analog & Digital Signal Processing, 1997, 44(2):102-102. [>>>](https://public.veypi.com/research/digitalcalibration/citations/Background%20Digital%20Calibration%20Techniques%20for%20Pipelined%20ADC%E2%80%99s.pdf)
@ -175,3 +216,16 @@
- [sar adc](https://www.cnblogs.com/nevel/p/6151671.html)
- [adc category](https://blog.csdn.net/ZQ07506149/article/details/82557492)
- [adc error](https://www.21ic.com/article/849518.html)
- [∑–△](https://www.cnblogs.com/nevel/p/6152340.html)
- [Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care](https://www.analog.com/media/en/training-seminars/tutorials/MT-001.pdf)
- [What the Nyquist Criterion Means to Your Sampled Data System Design ](https://www.analog.com/media/en/training-seminars/tutorials/MT-002.pdf)
- [Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor ](https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf)
- [The Good, the Bad, and the Ugly Aspects of ADC Input Noise—Is No Noise Good Noise? ](https://www.analog.com/media/en/training-seminars/tutorials/MT-004.pdf)
- [Noise Power Ratio (NPR)—A 65-Year Old Telephone System Specification Finds New Life in Modern Wireless Applications](https://www.analog.com/media/en/training-seminars/tutorials/MT-005.pdf)
- [ADC Noise Figure—An Often Misunderstood and Misinterpreted Specification](https://www.analog.com/media/en/training-seminars/tutorials/MT-006.pdf)
- [Aperture Time, Aperture Jitter, Aperture Delay Time— Removing the Confusion](https://www.analog.com/media/en/training-seminars/tutorials/MT-007.pdf)
- [Converting Oscillator Phase Noise to Time Jitter](https://www.analog.com/media/en/training-seminars/tutorials/MT-008.pdf)
- [Data Converter Codes—Can You Decode Them?](https://www.analog.com/media/en/training-seminars/tutorials/MT-009.pdf)
- [The Importance of Data Converter Static Specifications— Don't Lose Sight of the Basics!](https://www.analog.com/media/en/training-seminars/tutorials/MT-010.pdf)
- [Find Those Elusive ADC Sparkle Codes and Metastable States ](https://www.analog.com/media/en/training-seminars/tutorials/MT-011.pdf)

35
references.md Normal file
View File

@ -0,0 +1,35 @@
# references
- [Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care](https://www.analog.com/media/en/training-seminars/tutorials/MT-001.pdf)
- [What the Nyquist Criterion Means to Your Sampled Data System Design ](https://www.analog.com/media/en/training-seminars/tutorials/MT-002.pdf)
- [Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor ](https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf)
- [The Good, the Bad, and the Ugly Aspects of ADC Input Noise—Is No Noise Good Noise? ](https://www.analog.com/media/en/training-seminars/tutorials/MT-004.pdf)
- [Noise Power Ratio (NPR)—A 65-Year Old Telephone System Specification Finds New Life in Modern Wireless Applications](https://www.analog.com/media/en/training-seminars/tutorials/MT-005.pdf)
- [ADC Noise Figure—An Often Misunderstood and Misinterpreted Specification](https://www.analog.com/media/en/training-seminars/tutorials/MT-006.pdf)
- [Aperture Time, Aperture Jitter, Aperture Delay Time— Removing the Confusion](https://www.analog.com/media/en/training-seminars/tutorials/MT-007.pdf)
- [Converting Oscillator Phase Noise to Time Jitter](https://www.analog.com/media/en/training-seminars/tutorials/MT-008.pdf)
- [Data Converter Codes—Can You Decode Them?](https://www.analog.com/media/en/training-seminars/tutorials/MT-009.pdf)
- [The Importance of Data Converter Static Specifications— Don't Lose Sight of the Basics!](https://www.analog.com/media/en/training-seminars/tutorials/MT-010.pdf)
- [Find Those Elusive ADC Sparkle Codes and Metastable States ](https://www.analog.com/media/en/training-seminars/tutorials/MT-011.pdf)
- [Intermodulation Distortion Considerations for ADCs ](https://www.analog.com/media/en/training-seminars/tutorials/MT-012.pdf)
- [Evaluating High Speed DAC Performance ](https://www.analog.com/media/en/training-seminars/tutorials/MT-013.pdf)
- [Basic DAC Architectures I: String DACs and Thermometer (Fully Decoded) DACs ](https://www.analog.com/media/en/training-seminars/tutorials/MT-014.pdf)
- [Basic DAC Architectures II: Binary DACs](https://www.analog.com/media/en/training-seminars/tutorials/MT-015.pdf)
- [Basic DAC Architectures III: Segmented DACs](https://www.analog.com/media/en/training-seminars/tutorials/MT-016.pdf)
- [Oversampling Interpolating](https://www.analog.com/media/en/training-seminars/tutorials/MT-017.pdf)
- [Intentionally Nonlinear DACs](https://www.analog.com/media/en/training-seminars/tutorials/MT-018.pdf)
- [DAC Interface Fundamentals ](https://www.analog.com/media/en/training-seminars/tutorials/MT-019.pdf)
- [ADC Architectures I: The Flash Converter](https://www.analog.com/media/en/training-seminars/tutorials/MT-020.pdf)
- [ADC Architectures II: Successive Approximation ADCs ](https://www.analog.com/media/en/training-seminars/tutorials/MT-021.pdf)
- [ADC Architectures III: Sigma-Delta ADC Basics ](https://www.analog.com/media/en/training-seminars/tutorials/MT-022.pdf)
- [ADC Architectures IV: Sigma-Delta ADC Advanced Concepts and Applications ](https://www.analog.com/media/en/training-seminars/tutorials/MT-023.pdf)
- [ADC Architectures V: Pipelined Subranging ADCs](https://www.analog.com/media/en/training-seminars/tutorials/MT-024.pdf)
- [ADC Architectures VI: Folding ADCs ](https://www.analog.com/media/en/training-seminars/tutorials/MT-025.pdf)
- [ADC Architectures VII: Counting ADCs](https://www.analog.com/media/en/training-seminars/tutorials/MT-026.pdf)
- [ADC Architectures VIII: Integrating ADCs ](https://www.analog.com/media/en/training-seminars/tutorials/MT-027.pdf)
- [Voltage-to-Frequency Converters](https://www.analog.com/media/en/training-seminars/tutorials/MT-028.pdf)
- [Optical Encoders ](https://www.analog.com/media/en/training-seminars/tutorials/MT-029.pdf)
- [Resolver-to-Digital Converters](https://www.analog.com/media/en/training-seminars/tutorials/MT-030.pdf)
- [Grounding Data Converters and Solving the Mystery of "AGND" and "DGND" ](https://www.analog.com/media/en/training-seminars/tutorials/MT-031.pdf)